Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 5(4): 503-10, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19173348

RESUMO

A long-range ordered organic/inorganic material is synthesized from a bis-silane, (EtO)(3)Si-(CH(2))(3)-NHCONH-C(6)H(4)-NHCONH-(CH(2))(3)-Si(OEt)(3). This crosslinked sol-gel solid exhibits a supramolecular organization via intermolecular hydrogen bonding interactions between urea groups (-NHCONH-) and covalent siloxane bonding, triple bond Si-O-Si triple bond. Time-resolved in situ X-ray measurements (coupling small- and wide-angle X-ray scattering techniques) are performed to follow the different steps involved in the synthetic process. A new mechanism based on the crystallization of the hydrolyzed species followed by their polycondensation in solid state is proposed.


Assuntos
Siloxanas/química , Difração de Raios X/métodos , Modelos Moleculares , Espalhamento de Radiação
2.
J Phys Chem B ; 110(32): 15797-802, 2006 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-16898728

RESUMO

Fourier transform infrared (FTIR) spectroscopy has been used to probe the organization of the organic fragments in lamellar bridged silsesquioxanes with organic substructures based on alkylene chains of various lengths and urea groups [O1.5Si(CH2)3NHCONH(CH2)nNHCONH(CH2)3SiO1.5] (n = 6, 8-12). The structure and intermolecular interactions (hydrophobic and H-bonding) of these well-defined self-structured hybrid silicas are discussed in relation to their powder X-ray diffraction patterns. The degree of structural order is determined by the length and parity of the alkylene spacer. A concomitant enhancement in the degree of condensation of the inorganic component and a decrease in the strength of the hydrophobic interactions between the organic components are demonstrated. The strength and directionality of the H-bonding are directly correlated to the crystalllinity of the organic-inorganic hybrid materials.


Assuntos
Compostos de Organossilício/química , Dióxido de Silício/química , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Sensibilidade e Especificidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X
3.
Chemistry ; 11(5): 1527-37, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15662678

RESUMO

The synthesis of four bis(trialkoxysilylated) organic molecules capable of self-assembly--(EtO)3Si(CH2)3NHCONH-(CH2)n-NHCONH(CH2)3Si(OEt)3 (n = 9-12)--associating urea functional groups and alkylidene chains of variable length is described. These compounds behave as organogelators, forming supramolecular assemblies thanks to the intermolecular hydrogen bonding of urea groups. Whereas fluoride ion-catalysed hydrolysis in ethanol in the presence of a stoichiometric amount of water produced amorphous hybrids, acid-catalysed hydrolysis in an excess of water gave rise to the formation of crystalline lamellar hybrid materials through a self-organisation process. The structural features of these nanostructured organic/inorganic hybrids were analysed by several techniques: attenuated Fourier transformed infrared (ATR-FTIR), solid-state NMR spectroscopy (13C and 29Si), scanning and transmission electron microscopy (SEM and TEM) and powder X-ray diffraction (PXRD). The reaction conditions, the hydrophobic properties of the long alkylidene chains and the hydrogen-bonding properties of the urea groups are determining factors in the formation of these self-assembled nanostructured hybrid silicas.

5.
Chemistry ; 9(7): 1594-9, 2003 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-12658658

RESUMO

A new approach for the morphological control of bridged silsesquioxanes has been achieved by the hydrolysis of silylated organic molecules bearing urea groups. The urea groups are responsible for the auto-association of the molecules through intermolecular hydrogen-bonding interactions. The self-assembly leads to supramolecular architectures that have the ability to direct the organization of hybrid silicas under controlled hydrolysis. The hydrolysis of the chiral diureido derivatives of trans-(1,2)-diaminocyclohexane 1 under basic conditions has been examined. The solid-state NMR spectra ((29)Si and (13)C) showed the hybrid nature of these materials with wholly preserved S-C bond covalent bonds throughout the silicate network. Hybrid silicas with hollow tubular morphologies were obtained by the hydrolysis of the enantiomerically pure compounds, (R,R)-1 or (S,S)-1, whereas the corresponding racemic mixture, rac-1, led to a hybrid with ball-like structures. The tubular shape is likely to result from a combination of two phenomena: the auto-association abilities and a self-templating structuration of the hybrid materials by the organic crystalline precursor. Electronic microscopy techniques (SEM and TEM) gave evidence for the self-templating pathway. The formation of the ball-like structures occurs through a usual nucleation growth phenomenon owing to a higher solubility of the corresponding crystals in the same medium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA