Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Radiat Oncol ; 10: 221, 2015 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-26520568

RESUMO

BACKGROUND: Stereotactic radiosurgery (SRS) is an alternative to post-operative whole brain radiation therapy (WBRT) following resection of brain metastases. At our institution, CyberKnife (CK) is considered for local treatment of large cavities ≥2 cm. In this study, we aimed to evaluate patterns of failure and characterize patients best suited to treatment with this approach. METHODS: We retrospectively reviewed 30 patients treated with CK to 33 resection cavities ≥2 cm between 2011 and 2014. Patterns of intracranial failure were analyzed in 26 patients with post-treatment imaging. Survival was estimated by the Kaplan-Meier method and prognostic factors examined with log-rank test and Cox proportional hazards model. RESULTS: The most frequent histologies were lung (43 %) and breast (20 %). Median treatment volume was 25.1 cm(3) (range 4.7-90.9 cm(3)) and median maximal postoperative cavity diameter was 3.8 cm (range 2.8-6.7). The most common treatment was 30 Gy in 5 fractions prescribed to the 75 % isodose line. Median follow up for the entire cohort was 9.5 months (range 1.0-34.3). Local failure developed in 7 treated cavities (24 %). Neither cavity volume nor CK treatment volume was associated with local failure. Distant brain failure occurred in 20 cases (62 %) at a median of 4.2 months. There were increased rates of distant failure in patients who initially presented with synchronous metastases (p = 0.02). Leptomeningeal carcinomatosis (LMC) developed in 9 cases, (34 %). Salvage WBRT was performed in 5 cases (17 %) at a median of 5.2 months from CK. Median overall survival was 10.1 months from treatment. CONCLUSIONS: This study suggests that adjuvant CK is a reasonable strategy to achieve local control in large resection cavities. Patients with synchronous metastases at the time of CK may be at higher risk for distant brain failure. The majority of cases were spared or delayed WBRT with the use of local CK therapy.


Assuntos
Neoplasias Encefálicas/cirurgia , Radiocirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/secundário , Terapia Combinada , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Procedimentos Neurocirúrgicos , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Resultado do Tratamento
2.
Med Phys ; 29(5): 771-86, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12033573

RESUMO

The purpose of this study was to investigate the feasibility of using Monte Carlo methods to assist in the commissioning of electron beams for a medical linear accelerator. The EGS4/BEAM code system was used to model an installed linear accelerator at this institution. Following an initial tuning of the input parameters, dosimetry data normally measured during the machine commissioning was calculated using the Monte Carlo code. All commissioning data was calculated for 6- and 12-MeV electron beams, and a subset of the commissioning data was calculated for the 20-MeV electron beams. On central axis, calculated percentage depth dose, cross-beam profiles, cone-insert ratios, and air-gap factors were generally within 2% of Dmax or 1 mm of the measured commissioning data; however, calculated open-cone ratios were not within 2%, in most cases. Calculated off-axis dose profiles for small fields were generally within the 2% (1-mm) criteria; however, calculated dose profiles for larger (open cone) fields frequently failed the 2% (1-mm) criteria. The remaining discrepancies between Monte Carlo calculations and measurement could be due to flaws in the Monte Carlo code, inaccuracies in the simulation geometry, the approximation of the initial source configuration, or a combination of the above. Although agreement between Monte Carlo calculated and measured doses was impressive and similar to previously published comparisons, our results did not prove our hypothesis that Monte Carlo calculations can generate electron commissioning data that is accurate within 2% of Dmax or 0.1 cm over the entire range of clinical treatment parameters. Although we believe that this hypothesis can be proved, it remains a challenge for the medical physics community. We intend to pursue this further by developing systematic methods for isolating causes of these differences.


Assuntos
Elétrons/uso terapêutico , Método de Monte Carlo , Aceleradores de Partículas/estatística & dados numéricos , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Ar , Fenômenos Biofísicos , Biofísica , Simulação por Computador , Humanos , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA