Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(10): 17070-17079, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221537

RESUMO

Optical trapping has been proven to be an effective method of separating exciton-polariton condensates from the incoherent high-energy excitonic reservoir located at the pumping laser position. This technique has significantly improved the coherent properties of exciton-polariton condensates, when compared to a quasi-homogeneous spot excitation scheme. Here, we compare two experimental methods on a sample, where a single spot excitation experiment allowed us only to observe photonic lasing in the weak coupling regime. In contrast, the ring-shaped excitation resulted in the two-threshold behavior, where an exciton-polariton condensate manifests itself at the first and photon lasing at the second threshold. Both lasing regimes are trapped in an optical potential created by the pump. We interpret the origin of this confining potential in terms of repulsive interactions of polaritons with the reservoir at the first threshold and as a result of the excessive free-carrier induced refractive index change of the microcavity at the second threshold. This observation offers a way to achieve multiple phases of photonic condensates in samples, e.g., containing novel materials as an active layer, where two-threshold behavior is impossible to achieve with a single excitation spot.

2.
Phys Rev Lett ; 127(18): 185301, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34767383

RESUMO

Collective (elementary) excitations of quantum bosonic condensates, including condensates of exciton polaritons in semiconductor microcavities, are a sensitive probe of interparticle interactions. In anisotropic microcavities with momentum-dependent transverse-electric-transverse-magnetic splitting of the optical modes, the excitations' dispersions are predicted to be strongly anisotropic, which is a consequence of the synthetic magnetic gauge field of the cavity, as well as the interplay between different interaction strengths for polaritons in the singlet and triplet spin configurations. Here, by directly measuring the dispersion of the collective excitations in a high-density optically trapped exciton-polariton condensate, we observe excellent agreement with the theoretical predictions for spinor polariton excitations. We extract the interaction constants for polaritons of the same and opposite spin and map out the characteristic spin textures in an interacting spinor condensate of exciton polaritons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA