Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Histochem Cell Biol ; 161(6): 449-460, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38430258

RESUMO

The aim of this study is to determine the influence of the mitochondrial open-reading-frame of the twelve S rRNA-c (MOTS-c) peptide on pancreatic cell physiology. Moreover, in this study, we examined the changes in MOTS-c secretion and expression under different conditions. Our experiments were conducted using laboratory cell line cultures, specifically the INS-1E and αTC-1 cell lines, which represent ß and α pancreatic cells, respectively. As the pancreas is an endocrine organ, we also tested its hormone regulation capabilities. Furthermore, we assessed the secretion of MOTS-c after incubating the cells with glucose and free fatty acids. Additionally, we examined key cell culture parameters such as cell viability, proliferation, and apoptosis. The results obtained from this study show that MOTS-c has a significant impact on the physiology of pancreatic cells. Specifically, it lowers insulin secretion and expression in INS-1E cells and enhances glucagon secretion and expression in αTC-1 cells. Furthermore, MOTS-c affects cell viability and apoptosis. Interestingly, insulin and glucagon affect the MOTS-c secretion as well as glucose and free fatty acids. These experiments clearly show that MOTS-c is an important regulator of pancreatic metabolism, and there are numerous properties of MOTS-c yet to be discovered.


Assuntos
Células Secretoras de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Glucagon/citologia , Camundongos , Ratos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Glucose/metabolismo , Glucose/farmacologia , Linhagem Celular , Insulina/metabolismo , Glucagon/metabolismo
2.
Biology (Basel) ; 10(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34681131

RESUMO

MOTS-c peptide is a member of the group of mitochondria-derived peptides (MDP). It is a product of the open reading frame in the 12S RNA gene. Due to its features and functions in the body, this peptide is classified as a hormone. The first publications indicated that this hormone improves insulin sensitivity and lowers body weight in obese animals. This suggests that it may be an important peptide in maintaining the body's energy homeostasis. The aim of our work was to investigate the potential role of MOTS-c peptide during pregnancy, which is a condition prone to metabolic disorders. The research covered healthy, obese women and women with thyroid disorders. The obtained results indicated an increase in the concentration of MOTS-c in the blood of mothers and newborns in the obese group as compared to the healthy control group and a corresponding decrease in the concentration of this peptide in mothers and newborns in the group with hypothyroidism compared to the obese group. Moreover, we also observed a strong positive correlation between the concentration of MOTS-c in maternal blood and in umbilical cord blood. In summary, the MOTS-c peptide shows changes in blood concentration in various physiological states and may, in the future, become an important tool in the fight against metabolic diseases such as obesity or type 2 diabetes.

3.
Animals (Basel) ; 11(2)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671411

RESUMO

Spexin (SPX) is a highly conservative peptide hormone containing 14 amino acids and was discovered in 2007 by bioinformatics methods. However, nothing is yet known about its role in the metabolism of birds, including broilers. The aim of this study was to investigate the effect of short-term fasting (2, 4, and 8 h) on the concentration of SPX in blood serum and the expression levels of the genes encoding this peptide (SPX1) and its receptors, GALR2 and GALR3, in the tissues involved in carbohydrate and lipid metabolism (muscles, adipose tissue, and liver). We also analyzed the mRNA expression of these genes in various chicken tissues. Moreover, we studied the correlation between the serum level of SPX and other metabolic parameters (insulin, glucagon, glucose, triglycerides, and cholesterol). Using RT-qPCR, we found that SPX1, GALR2, and GALR3 are expressed in all investigated tissues in broiler chicken. Moreover, using a commercially available radio-immunoassay, we noted an increase of the SPX level in blood serum after 4 and 8 h of fasting compared to nonfasted animals (p < 0.05). This increase was positively correlated with glucagon concentration (r = 0.341; p < 0.05) and negatively with glucose concentration (r = -0.484; p < 0.01). Additionally, we discovered that in the short term, food deprivation leads to the expression regulation of SPX1, GALR2, and GLAR3 in tissues associated with metabolism of carbohydrates and lipids. The obtained results indicate that SPX is involved in the regulation of metabolism in broiler chickens.

4.
Gen Comp Endocrinol ; 294: 113498, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32360543

RESUMO

Fibroblast growth factor 1 (FGF-1), also known as acidic fibroblast growth factor (aFGF), is a growth factor and signaling protein encoded by the Fgf1 gene. Previous studies have shown that FGF-1 may also participate in the regulation of glucose metabolism, both in healthy organisms and in pathological conditions such as diabetes. Because insulin the main regulator of glucose metabolism is secreted from pancreatic beta cells, we investigated whether FGF-1 directly affects the secretion of this hormone and regulates the metabolism of beta cells and isolated pancreatic islets. By using insulin-producing INS-1E cells and isolated pancreatic islets, we investigated the effect of FGF-1 on cell proliferation, viability, apoptosis, and insulin expression and secretion. Our study showed that FGF1 and fibroblast growth factor receptors (FgfRs: FgfR1, FgfR2, FgfR3, and FgfR4) are present on mRNA level in INS-1E cells and isolated rat pancreatic islets. We also proved that FGF1 stimulates the proliferation of INS-1E beta cells and enhances the viability of these cells and that of isolated pancreatic islet cells, and that ERK1/2 kinase is involved in the regulation of INS-1E cell proliferation. Moreover, we found that FGF1 can stimulate insulin secretion from both INS-1E cells and isolated rat pancreatic islets. Thus, the FGF1 peptide increases cell survival and decreases cell death. The obtained results indicate that FGF1 may play a role in controlling the physiology and metabolism of pancreatic beta cells as well as glycemia.


Assuntos
Fator 1 de Crescimento de Fibroblastos/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Insulina/metabolismo , Secreção de Insulina , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA