Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 11(6): 950-962, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29928302

RESUMO

Reducing crop losses due to abiotic stresses is a major target of agricultural biotechnology that will increase with climate change and global population growth. Concerns, however, have been raised about potential ecological impacts if transgenes become established in wild populations and cause increased competitiveness of weedy or invasive species. Potential risks will be a function of transgene movement, population sizes, and fitness effects on the recipient population. While key components influencing gene flow have been extensively investigated, there have been few studies on factors subsequent to transgene movement that can influence persistence and competitiveness. Here, we performed multiyear, multigenerational, assessment to examine fitness effects and persistence of three mechanistically different abiotic stress tolerance genes: C-repeat binding factor 3/drought responsive element binding factor 1a (CBF3/DREB1a); Salt overly sensitive 1 (SOS1); and Mannose-6-phosphate reductase (M6PR). Transgenic Arabidopsis thaliana overexpressing these genes were grown in pure populations and in competition with wild-type (WT) parents for six generations spanning a range of field environment conditions. Growth, development, biomass, seed production, and transgene frequency were measured at each generation. Seed planted for each generation was obtained from the previous generation as would occur during establishment of a new genotype in the environment. The three transgenes exhibited different fitness effects and followed different establishment trajectories. In comparison with pure populations, CBF3 lines exhibited reduced dry weight, seed yield, and viable seed yield, relative to WT background. In contrast, overexpression of SOS1 and M6PR did not significantly impact productivity measures in pure populations. In competition with WT, negative fitness effects were magnified. Transgene frequencies were significantly reduced for CBF3 and SOS1 while frequencies of M6PR appeared to be subject to genetic drift. These studies demonstrate the importance of fitness effects and intergenotype competition in influencing persistence of transgenes conferring complex traits.

2.
Virus Res ; 241: 172-184, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28688850

RESUMO

As agricultural acreage expanded and came to dominate landscapes across the world, viruses gained opportunities to move between crop and wild native plants. In the Midwestern USA, virus exchange currently occurs between widespread annual Poaceae crops and remnant native perennial prairie grasses now under consideration as bioenergy feedstocks. In this region, the common aphid species Rhopalosiphum padi L. (the bird cherry-oat aphid) transmits several virus species in the family Luteoviridae, including Barley yellow dwarf virus (BYDV-PAV, genus Luteovirus) and Cereal yellow dwarf virus (CYDV-RPV and -RPS, genus Polerovirus). The yellow dwarf virus (YDV) species in these two genera share genetic similarities in their 3'-ends, but diverge in the 5'-regions. Most notably, CYDVs encode a P0 viral suppressor of RNA silencing (VSR) absent in BYDV-PAV. Because BYDV-PAV has been reported more frequently in annual cereals and CYDVs in perennial non-crop grasses, we examine the hypothesis that the viruses' genetic differences reflect different affinities for crop and non-crop hosts. Specifically, we ask (i) whether CYDVs might persist within and affect a native non-crop grass more strongly than BYDV-PAV, on the grounds that the polerovirus VSR could better moderate the defenses of a well-defended perennial, and (ii) whether the opposite pattern of effects might occur in a less defended annual crop. Because previous work found that the VSR of CYDV-RPS possessed greater silencing suppressor efficiency than that of CYDV-RPV, we further explored (iii) whether a novel grass-associated CYDV-RPS isolate would influence a native non-crop grass more strongly than a comparable CYDV-RPV isolate. In growth chamber studies, we found support for this hypothesis: only grass-associated CYDV-RPS stunted the shoots and crowns of Panicum virgatum L. (switchgrass), a perennial native North American prairie grass, whereas crop-associated BYDV-PAV (and coinfection with BYDV-PAV and CYDV-RPS) most stunted annual Avena sativa L. (oats). These findings suggest that some of the diversity in grass-infecting Luteoviridae reflects viral capacity to modulate defenses in different host types. Intriguingly, while all virus treatments also reduced root production in both host species, only crop-associated BYDV-PAV (or co-infection) reduced rooting depths. Such root effects may increase host susceptibility to drought, and indicate that BYDV-PAV pathogenicity is determined by something other than a P0 VSR. These findings contribute to growing evidence that pathogenic crop-associated viruses may harm native species as well as crops. Critical next questions include the extent to which crop-associated selection pressures drive viral pathogenesis.


Assuntos
Avena/virologia , Grão Comestível/crescimento & desenvolvimento , Luteoviridae/crescimento & desenvolvimento , Panicum/virologia , Raízes de Plantas/crescimento & desenvolvimento , Interferência de RNA , Triticum/virologia , Sequência de Aminoácidos , Animais , Afídeos/virologia , Avena/crescimento & desenvolvimento , Sequência de Bases , Grão Comestível/virologia , Luteoviridae/genética , Panicum/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Raízes de Plantas/virologia , Análise de Sequência de RNA , Triticum/crescimento & desenvolvimento
3.
Transgenic Res ; 23(6): 971-83, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24178711

RESUMO

The requirement for environmental risk assessment (ERA) of genetically engineered (GE) plants prior to large scale or commercial introduction into the environment is well established in national laws and regulations, as well as in international agreements. Since the first introductions of GE plants in commercial agriculture in the 1990s, a nearly universal paradigm has emerged for conducting these assessments based on a few guiding principles. These include the concept of case-by-case assessment, the use of comparative assessments, and a focus of the ERA on characteristics of the plant, the introduced trait, and the receiving environment as well as the intended use. In practice, however, ERAs for GE plants have frequently focused on achieving highly detailed characterizations of potential hazards at the expense of consideration of the relevant levels of exposure. This emphasis on exhaustive hazard characterization can lead to great difficulties when applied to ERA for GE plants under low-exposure conditions. This paper presents some relevant considerations for conducting an ERA for a GE plant in a low-exposure scenario in the context of the generalized ERA paradigm, building on discussions and case studies presented during a session at ISBGMO 12.


Assuntos
Produtos Agrícolas , Exposição Ambiental/prevenção & controle , Monitoramento Ambiental/legislação & jurisprudência , Plantas Geneticamente Modificadas/efeitos adversos , Formulação de Políticas , Medição de Risco/métodos , Humanos
4.
Plant Biotechnol J ; 10(3): 284-300, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22070784

RESUMO

Engineered abiotic stress resistance is an important target for increasing agricultural productivity. There are concerns, however, regarding possible ecological impacts of transgenic crops. In contrast to the first wave of transgenic crops, many abiotic stress resistance genes can initiate complex downstream changes. Transcriptome profiling has been suggested as a comprehensive non-targeted approach to examine the secondary effects. We compared phenotypic and transcriptomic effects of constitutive expression of genes intended to confer salt stress tolerance by three different mechanisms: a transcription factor, CBF3/DREB1a; a metabolic gene, M6PR, for mannitol biosynthesis; and the Na⁺/H⁺ antiporter, SOS1. Transgenic CBF3, M6PR and SOS1 Arabidopsis thaliana were grown together in the growth chamber, greenhouse and field. In the absence of salt, M6PR and SOS1 lines performed comparably with wild type; CBF3 lines exhibited dwarfing as reported previously. All three transgenes conferred fitness advantage when subjected to 100 mm NaCl in the growth chamber. CBF3 and M6PR affected transcription of numerous abiotic stress-related genes as measured by Affymetrix microarray analysis. M6PR additionally modified expression of biotic stress and oxidative stress genes. Transcriptional effects of SOS1 in the absence of salt were smaller and primarily limited to redox-related genes. The extent of transcriptome change, however, did not correlate with the effects on growth and reproduction. Thus, the magnitude of global transcriptome differences may not predict phenotypic differences upon which environment and selection act to influence fitness. These observations have implications for interpretation of transcriptome analyses in the context of risk assessment and emphasize the importance of evaluation within a phenotypic context.


Assuntos
Arabidopsis/genética , Fenótipo , Plantas Tolerantes a Sal/genética , Transcriptoma , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Aptidão Genética , Manitol/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Cloreto de Sódio/farmacologia , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA