Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0298424, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38498575

RESUMO

The Cytochrome P450 (CYP) enzymes metabolize a variety of drugs, which may potentially lead to toxicity or reduced efficacy when drugs are co-administered. These drug-drug interactions are often manifested by CYP3A4, the most prevalent of all CYP isozymes. We carried out multiple MD simulations employing CAVER to quantify the channels, and Hidden Markov Models (HMM) to characterize the behavior of the gating residues. We discuss channel properties, bottleneck residues with respect to their likelihood to deem the respective channel ingress or egress, gating residues regarding their open or closed states, and channel location relative to the membrane. Channels do not display coordinated motion and randomly transition between different conformations. Gateway residues also behave in a random fashion. Our findings shed light on the equilibrium behavior of the gating residues and channels in the apo state.


Assuntos
Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas
2.
Kidney Int ; 103(1): 87-99, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283570

RESUMO

Widespread aberrant gene expression is a pathological hallmark of polycystic kidney disease (PKD). Numerous pathogenic signaling cascades, including c-Myc, Fos, and Jun, are transactivated. However, the underlying epigenetic regulators are poorly defined. Here we show that H3K27ac, an acetylated modification of DNA packing protein histone H3 that marks active enhancers, is elevated in mouse and human samples of autosomal dominant PKD. Using comparative H3K27ac ChIP-Seq analysis, we mapped over 16000 active intronic and intergenic enhancer elements in Pkd1-mutant mouse kidneys. We found that the cystic kidney epigenetic landscape resembles that of a developing kidney, and over 90% of upregulated genes in Pkd1-mutant kidneys are co-housed with activated enhancers in the same topologically associated domains. Furthermore, we identified an evolutionarily conserved enhancer cluster downstream of the c-Myc gene and super-enhancers flanking both Jun and Fos loci in mouse and human models of autosomal dominant PKD. Deleting these regulatory elements reduced c-Myc, Jun, or Fos abundance and suppressed proliferation and 3D cyst growth of Pkd1-mutant cells. Finally, inhibiting glycolysis and glutaminolysis or activating Ppara in Pkd1-mutant cells lowerd global H3K27ac levels and its abundance on c-Myc enhancers. Thus, our work suggests that epigenetic rewiring mediates the transcriptomic dysregulation in PKD, and the regulatory elements can be targeted to slow cyst growth.


Assuntos
Elementos Facilitadores Genéticos , Epigênese Genética , Rim Policístico Autossômico Dominante , Animais , Humanos , Camundongos , Cistos/patologia , Histonas/metabolismo , Rim/patologia , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Transdução de Sinais
3.
Nat Commun ; 13(1): 4765, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35965273

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD), among the most common human genetic conditions and a frequent etiology of kidney failure, is primarily caused by heterozygous PKD1 mutations. Kidney cyst formation occurs when PKD1 dosage falls below a critical threshold. However, no framework exists to harness the remaining allele or reverse PKD1 decline. Here, we show that mRNAs produced by the noninactivated PKD1 allele are repressed via their 3'-UTR miR-17 binding element. Eliminating this motif (Pkd1∆17) improves mRNA stability, raises Polycystin-1 levels, and alleviates cyst growth in cellular, ex vivo, and mouse PKD models. Remarkably, Pkd2 is also inhibited via its 3'-UTR miR-17 motif, and Pkd2∆17-induced Polycystin-2 derepression retards cyst growth in Pkd1-mutant models. Moreover, acutely blocking Pkd1/2 cis-inhibition, including after cyst onset, attenuates murine PKD. Finally, modeling PKD1∆17 or PKD2∆17 alleles in patient-derived primary ADPKD cultures leads to smaller cysts, reduced proliferation, lower pCreb1 expression, and improved mitochondrial membrane potential. Thus, evading 3'-UTR cis-interference and enhancing PKD1/2 mRNA translation is a potentially mutation-agnostic ADPKD-arresting approach.


Assuntos
Cistos , MicroRNAs , Rim Policístico Autossômico Dominante , Proteína Quinase C/metabolismo , Canais de Cátion TRPP/metabolismo , Animais , Cistos/genética , Modelos Animais de Doenças , Humanos , Camundongos , MicroRNAs/genética , Rim Policístico Autossômico Dominante/genética , RNA Mensageiro/genética , Canais de Cátion TRPP/genética
4.
JCI Insight ; 5(7)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182218

RESUMO

Renal cysts are the defining feature of autosomal dominant polycystic kidney disease (ADPKD); however, the substantial interstitial inflammation is an often-overlooked aspect of this disorder. Recent studies suggest that immune cells in the cyst microenvironment affect ADPKD progression. Here we report that microRNAs (miRNAs) are new molecular signals in this crosstalk. We found that miR-214 and its host long noncoding RNA Dnm3os are upregulated in orthologous ADPKD mouse models and cystic kidneys from humans with ADPKD. In situ hybridization revealed that interstitial cells in the cyst microenvironment are the primary source of miR-214. While genetic deletion of miR-214 does not affect kidney development or homeostasis, surprisingly, its inhibition in Pkd2- and Pkd1-mutant mice aggravates cyst growth. Mechanistically, the proinflammatory TLR4/IFN-γ/STAT1 pathways transactivate the miR-214 host gene. miR-214, in turn as a negative feedback loop, directly inhibits Tlr4. Accordingly, miR-214 deletion is associated with increased Tlr4 expression and enhanced pericystic macrophage accumulation. Thus, miR-214 upregulation is a compensatory protective response in the cyst microenvironment that restrains inflammation and cyst growth.


Assuntos
MicroRNAs/metabolismo , Rim Policístico Autossômico Dominante/metabolismo , Transdução de Sinais , Animais , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia
5.
Protein Sci ; 29(2): 542-554, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31702853

RESUMO

An engineered variant of T4 lysozyme serves as a model for studying induced remote conformational changes in a full protein context. The design involves a duplicated surface helix, flanked by two loops, that switches between two different conformations spanning about 20 Å. Molecular dynamics simulations of the engineered protein, up to 1 µs, rule out α-helix to ß-sheet transitions within the duplicated helix as suggested by others. These simulations highlight how the use of different force fields can lead to radical differences in the structure of the protein. In addition, Markov state modeling and transition path theory were employed to map a 6.6 µs simulation for possible early intermediate states and to provide insights into the onset of the switching motion. The putative intermediates involve the folding of one helical turn in the C-terminal loop through energy driven, sequential rearrangement of nearby salt bridges around the key residue Arg63. These results provide a first step towards understanding the energetics and dynamics of a rather complicated intra-protein motion.


Assuntos
Bacteriófago T4/enzimologia , Simulação de Dinâmica Molecular , Muramidase/química , Engenharia de Proteínas , Bacteriófago T4/metabolismo , Muramidase/genética , Muramidase/metabolismo , Mutação , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA