Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 114(3): 411-20, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23195630

RESUMO

In sport, high training load required to reach peak performance pushes human adaptation to their limits. In that process, athletes may experience general fatigue, impaired performance, and may be identified as overreached (OR). When this state lasts for several months, an overtraining syndrome is diagnosed (OT). Until now, no variable per se can detect OR, a requirement to prevent the transition from OR to OT. It encouraged us to further investigate OR using a multivariate approach, including physiological, biomechanical, cognitive, and perceptive monitoring. Twenty-four highly trained triathletes were separated into an overload group and a normo-trained group (NT) during 3 wk of training. Given the decrement of their running performance, 11 triathletes were diagnosed as OR after this period. A discriminant analysis showed that the changes of eight parameters measured during a maximal incremental test could explain 98.2% of the OR state (lactatemia, heart rate, biomechanical parameters and effort perception). Variations in heart rate and lactatemia were the two most discriminating factors. When the multifactorial analysis was restricted to these variables, the classification score reached 89.5%. Catecholamines and creatine kinase concentrations at rest did not change significantly in both groups. Running pattern was preserved and cognitive performance decrement was observed only at exhaustion in OR subjects. This study showed that monitoring various variables is required to prevent the transition between NT and OR. It emphasized that an OR index, which combines heart rate and blood lactate concentration changes after a strenuous training period, could be helpful to routinely detect OR.


Assuntos
Atletas , Transtornos Traumáticos Cumulativos/diagnóstico , Resistência Física/fisiologia , Esforço Físico/fisiologia , Corrida/fisiologia , Adulto , Catecolaminas/metabolismo , Creatina Quinase/metabolismo , Transtornos Traumáticos Cumulativos/metabolismo , Transtornos Traumáticos Cumulativos/fisiopatologia , Fadiga/metabolismo , Fadiga/fisiopatologia , Frequência Cardíaca/fisiologia , Humanos , Ácido Láctico/sangue , Descanso/fisiologia
2.
Med Sci Sports Exerc ; 43(4): 685-92, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20881886

RESUMO

PURPOSE: The aims of this study were i) to evaluate changes in leg-spring behavior during an exhaustive run in elite triathletes and ii) to determine whether these modifications were related to an increase in the energy cost of running (Cr). METHODS: Nine elite triathletes ran to exhaustion on an indoor track at a constant velocity corresponding to 95% of the velocity associated with the maximal oxygen uptake (mean ± SD = 5.1 ± 0.3 m·s(-1), time to exhaustion = 10.7 ± 2.6 min). Vertical and horizontal ground reaction forces were measured every lap (200 m) by a 5-m-long force platform system. Cr was measured from pulmonary gas exchange using a breath-by-breath portable gas analyzer. RESULTS: Leg stiffness (-13.1%, P < 0.05) and peak vertical (-9.2%, P < 0.05) and propulsive (-7.5%, P < 0.001) forces decreased significantly with fatigue, whereas vertical stiffness did not change significantly. Leg and vertical stiffness changes were positively related with modifications of aerial time (R(2) = 0.66, P < 0.01 and R(2) = 0.72, P < 0.01, respectively) and negatively with contact time (R(2) = 0.71, P < 0.01 and R(2) = 0.74, P < 0.01, respectively). Alterations of vertical forces were related with the decrease of the angle of velocity vector at toe off (R(2) = 0.73, P < 0.01). When considering mean values of oxygen uptake, no change was observed from 33% to 100% of the time to exhaustion. However, between one-third and two-thirds of the fatiguing run, negative correlations were observed between oxygen consumption and leg stiffness (R(2) = 0.83, P < 0.001) or vertical stiffness (R(2) = 0.50, P < 0.03). CONCLUSIONS: During a constant run to exhaustion, the fatigue induces a stiffness adaptation that modifies the stride mechanical parameters and especially decreases the maximal vertical force. This response to fatigue involves greater energy consumption.


Assuntos
Atletas , Perna (Membro)/fisiologia , Movimento , Contração Muscular/fisiologia , Esforço Físico/fisiologia , Corrida/fisiologia , Adulto , Algoritmos , Metabolismo Energético/fisiologia , Feminino , Humanos , Masculino , Fadiga Muscular/fisiologia , Consumo de Oxigênio , Adulto Jovem
3.
Med Sci Sports Exerc ; 41(6): 1296-302, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19461535

RESUMO

PURPOSE: The aim of this study was to evaluate the power output (PO) during the cycle phase of the Beijing World Cup test event of the Olympic triathlon in China 2008. METHODS: Ten elite triathletes (5 females, 5 males) performed two laboratory tests: an incremental cycling test during which PO, HR at ventilatory thresholds (VT1 and VT2), and maximal aerobic power (MAP) were assessed, and a brief all-out test to determine maximal anaerobic power output (MAnP). During the cycle part of competition, PO and HR were measured directly with portable device. The amount of time spent below PO at VT1 (zone 1), between PO at VT1 and VT2 (zone 2), between PO at VT2 and MAP (zone 3) and above MAP (zone 4) was analyzed. RESULTS: A significant decrease in PO, speed, and HR values was observed during the race. The distribution of time was 51 +/- 9% for zone 1, 17 +/- 6% for zone 2, 15 +/- 3% for zone 3, and 17 +/- 6% was performed at workloads higher than MAP (zone 4). From HR values, the triathletes spent 27 +/- 12% in zone 1, 26 +/- 8% in zone 2, and 48 +/- 14% above VT2. CONCLUSIONS: This study indicates a progressive reduction in speed, PO, and HR, coupled with an increase in variability during the event. The Olympic distance triathlon requires a higher aerobic and anaerobic involvement than constant-workload cycling exercises classically analyzed in laboratory settings (i.e., time trial) or Ironman triathlons. Furthermore, monitoring direct PO could be more suitable to quantify the intensity of a race with pacing strategies than classic HR measurements.


Assuntos
Ciclismo , Comportamento Competitivo , Contração Isométrica , Músculo Esquelético , Adulto , Limiar Anaeróbio , Análise de Variância , Ergometria , Exercício Físico , Tolerância ao Exercício , Feminino , Humanos , Masculino , Consumo de Oxigênio , Estudos Prospectivos
4.
Eur J Appl Physiol ; 106(4): 535-45, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19340453

RESUMO

The aim of this study was to compare the pacing strategies adopted by women and men during a World Cup ITU triathlon. Twelve elite triathletes (6 females, 6 males) competed in a World Cup Olympic distance competition where speed and heart rate (HR) were measured in the three events. The power output (PO) was recorded in cycling to determine the time spent in five intensity zones ([0-10% VT1]; [10% VT1-VT1]; [VT1-VT2]; [VT2-MAP] and > or =MAP) [ventilatory threshold (VT); maximal aerobic power (MAP)]. Swimming and running speeds decreased similarly for both genders (P < 0.05) and HR values were similar through the whole race (92 +/- 2 and 92 +/- 3% of maximal HR for women and men, respectively). The distribution of time spent in the five zones during the cycling leg was the same for both genders. The men's speed and PO decreased after the first bike lap (P < 0.05) and the women spent relatively more time above MAP in the hilly sections (45 +/- 4 vs. 32 +/- 4%). The men's running speed decreased significantly over the whole circuit, whereas the women slowed only over the uphill and downhill sections (P < 0.05). This study indicates that both female and male elite triathletes adopted similar positive pacing strategies during swimming and running legs. Men pushed the pace harder during the swim-to-cycle transition contrary to the women and female triathletes were more affected by changes in slope during the cycling and running phases.


Assuntos
Ciclismo/fisiologia , Esforço Físico/fisiologia , Corrida/fisiologia , Natação/fisiologia , Análise e Desempenho de Tarefas , Adulto , Feminino , Humanos , Masculino , Fatores Sexuais
5.
Can J Appl Physiol ; 28(3): 410-23, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12955868

RESUMO

The purposes of this study were (1) to determine the time sustained above 90% of VO2max in different intermittent running sessions having the same overall time run at the velocity (vVO2max) associated with VO2max, and (2) to test whether the use of a fixed-fraction (50%) of the time to exhaustion at vVO2max (Tlim) leads to longer time spent at a high percentage of VO2max. Subjects were 8 triathletes who, after determination of their track vVO2max and Tlim, performed three intermittent running sessions alternating the velocity between 100% and 50% of vVO2max, termed 30 s-30 s, 60 s-30 s, and 1/2 Tlim, where the overall time at vVO2max was similar (= 3 x Tlim). VO2max achieved in the incremental test was 71.1 +/- 3.9 ml.min-1.kg-1 and Tlim was 236 +/- 49 s. VO2peak and peak heart rate were lower in 30 s-30 s than in the other intermittent runs. The time spent above 90% of VO2max was significantly (p < 0.001) longer either in 60 s-30 s (531 +/- 187 s) or in 1/2 Tlim-1/2 Tlim (487 +/- 176 s) than in 30 s-30 s (149 +/- 33 s). Tlim was negatively correlated with the time (in % of Tlim) spent above 90% of VO2max in 30 s-30 s (r = -0.75, p < 0.05). Tlim was also correlated with the difference of time spent over 90% of VO2max between 60 s-30 s and 30 s-30 s (r = 0.77, p < 0.05), or between 1/2 Tlim-1/2 Tlim and 30 s-30 s (r = 0.97, p < 0.001). The results confirm that vVO2max and Tlim are useful for setting interval-training sessions. However, the use of an individualized fixed-fraction of Tlim did not lead to longer time spent at a high percentage of VO2max compared to when using a fixed work-interval duration.


Assuntos
Consumo de Oxigênio , Corrida/fisiologia , Adulto , Humanos , Resistência Física/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA