Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38140118

RESUMO

The use of an immunogenic smart radiotherapy biomaterial (iSRB) for the delivery of anti-CD40 is effective in treating different cancers in animal models. This study further characterizes the use of iSRBs to evaluate any associated toxicity in healthy C57BL6 mice. iSRBs were fabricated using a poly-lactic-co-glycolic-acid (PLGA) polymer mixed with titanium dioxide (TiO2) nanoparticles incorporated into its matrix. Animal studies included investigations of freely injected anti-CD40, anti-CD40-loaded iSRBs, unloaded iSRBs and control (healthy) animal cohorts. Mice were euthanized at pre-determined time points post-treatment to evaluate the serum chemistry pertaining to kidney and liver toxicity and cell blood count parameters, as well as pathology reports on organs of interest. Results showed comparable liver and kidney function in all cohorts. The results indicate that using iSRBs with or without anti-CD40 does not result in any significant toxicity compared to healthy untreated animals. The findings provide a useful reference for further studies aimed at optimizing the therapeutic efficacy and safety of iSRBs and further clinical translation work.

2.
Lancet Oncol ; 23(6): e251-e312, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35550267

RESUMO

In sub-Saharan Africa (SSA), urgent action is needed to curb a growing crisis in cancer incidence and mortality. Without rapid interventions, data estimates show a major increase in cancer mortality from 520 348 in 2020 to about 1 million deaths per year by 2030. Here, we detail the state of cancer in SSA, recommend key actions on the basis of analysis, and highlight case studies and successful models that can be emulated, adapted, or improved across the region to reduce the growing cancer crises. Recommended actions begin with the need to develop or update national cancer control plans in each country. Plans must include childhood cancer plans, managing comorbidities such as HIV and malnutrition, a reliable and predictable supply of medication, and the provision of psychosocial, supportive, and palliative care. Plans should also engage traditional, complementary, and alternative medical practices employed by more than 80% of SSA populations and pathways to reduce missed diagnoses and late referrals. More substantial investment is needed in developing cancer registries and cancer diagnostics for core cancer tests. We show that investments in, and increased adoption of, some approaches used during the COVID-19 pandemic, such as hypofractionated radiotherapy and telehealth, can substantially increase access to cancer care in Africa, accelerate cancer prevention and control efforts, increase survival, and save billions of US dollars over the next decade. The involvement of African First Ladies in cancer prevention efforts represents one practical approach that should be amplified across SSA. Moreover, investments in workforce training are crucial to prevent millions of avoidable deaths by 2030. We present a framework that can be used to strategically plan cancer research enhancement in SSA, with investments in research that can produce a return on investment and help drive policy and effective collaborations. Expansion of universal health coverage to incorporate cancer into essential benefits packages is also vital. Implementation of the recommended actions in this Commission will be crucial for reducing the growing cancer crises in SSA and achieving political commitments to the UN Sustainable Development Goals to reduce premature mortality from non-communicable diseases by a third by 2030.


Assuntos
COVID-19 , Neoplasias , Doenças não Transmissíveis , África Subsaariana/epidemiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Criança , Atenção à Saúde , Humanos , Neoplasias/epidemiologia , Neoplasias/terapia , Pandemias
3.
Int J Radiat Oncol Biol Phys ; 112(2): 475-486, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34530092

RESUMO

PURPOSE: Persistent immunosuppression in the tumor microenvironment is a major limitation to boosting the abscopal effect, whereby radiation therapy at 1 site can lead to regression of tumors at distant sites. Here, we investigate the use of radiation and immunogenic biomaterials (IBM) targeting only the gross tumor volume/subvolume for boosting the abscopal effect in immunologically cold tumors. METHODS AND MATERIALS: To evaluate the abscopal effect, 2 syngeneic contralateral tumors were implanted in each mouse, where only 1 tumor was treated. IBM was administered to the treated tumor with 1 fraction of radiation and results were compared, including as a function of different radiation therapy field sizes. The IBM was designed similar to fiducial markers using immunogenic polymer components loaded with anti-CD40 agonist. Tumor volumes of both treated and untreated tumors were measured over time, along with survival and corresponding immune cell responses. RESULTS: Results showed that radiation with IBM administered to the gross tumor subvolume can effectively boost abscopal responses in both pancreatic and prostate cancers, significantly increasing survival (P < .0001 and P < .001, respectively). Results also showed equal or superior abscopal responses when using field sizes smaller than the gross tumor volume compared with irradiating the whole tumor volume. These results were buttressed by observation of higher infiltration of cytotoxic CD8+ T-lymphocytes in the treated tumors (P < .0001) and untreated tumors (P < .0001) for prostate cancer. Significantly higher infiltration was also observed in treated tumors (P < .0001) and untreated tumors P < .01) for pancreatic cancer. Moreover, the immune responses were accompanied by a positive shift of proinflammatory cytokines in both prostate and pancreatic tumors. CONCLUSIONS: The approach targeting gross tumor subvolumes with radiation and IBM offers opportunity for boosting the abscopal effect while significantly minimizing healthy tissue toxicity. This approach proffers a radioimmunotherapy dose-painting strategy that can be developed for overcoming current barriers of immunosuppression especially for immunologically cold tumors.


Assuntos
Materiais Biocompatíveis , Neoplasias , Animais , Materiais Biocompatíveis/uso terapêutico , Linfócitos T CD8-Positivos , Masculino , Camundongos , Radioimunoterapia , Carga Tumoral , Microambiente Tumoral
4.
Front Oncol ; 11: 711078, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765538

RESUMO

Effective in situ cancer vaccines require both a means of tumor cell death and a source of adjuvant to activate local dendritic cells. Studies have shown that the use of radiotherapy (RT) to induce tumor cell death and anti-CD40 to activate dendritic cells can result in in situ vaccination in animal models. Here, investigations are carried out on potential strategies to enhance such in situ vaccination. Strategies investigated include the use of smart immunogenic biomaterials (IBM) loaded with anti-CD40 in different tumor types including immunologically cold tumors like pancreatic and prostate tumors. The use of downstream checkpoint inhibitors to further boost such in situ vaccination is also examined. Results indicate that the use of IBM to deliver the anti-CD40 significantly enhances the effectiveness of in situ vaccination with anti-CD40 compared with direct injection in pancreatic and prostate cancers (p < 0.001 and p < 0.0001, respectively). This finding is consistent with significant increase in infiltration of antigen-presenting cells in the treated tumor, and significant increase in the infiltration of CD8+ cytotoxic T lymphocyte into distant untreated tumors. Moreover, in situ vaccination with IBM is consistently observed across different tumor types. Meanwhile, the addition of downstream immune checkpoint inhibitors further enhances overall survival when using the IBM approach. Overall, the findings highlight potential avenues for enhancing in situ vaccination when combining radiotherapy with anti-CD40.

5.
JCO Glob Oncol ; 7: 410-415, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33760639

RESUMO

PURPOSE: The COVID-19 pandemic significantly disrupted cancer care in Africa, further exposing major health disparities. This paper compares and contrasts the experiences of 15 clinicians in six different African cancer centers to highlight the positive aspects (silver linings) in an otherwise negative situation. METHODS: Data are from personal experience of the clinicians working at the six cancer centers blended with what is available in the literature. RESULTS: The impact of COVID-19 on cancer care appeared to vary not only across the continent but also over cancer centers. Different factors such as clinic location, services offered, available resources, and level of restrictions imposed because of COVID-19 were associated with these variations. Collectively, delays in treatment and limited access to cancer care were commonly reported in the different regions. CONCLUSION: There is a lack of data on cancer patients with COVID-19 and online COVID-19 and cancer registries for Africa. Analysis of the available data, however, suggests a higher mortality rate for cancer patients with COVID-19 compared with those without cancer. Positive or silver linings coming out of the pandemic include the adoption of hypofractionated radiation therapy and teleoncology to enhance access to care while protecting patients and staff members. Increasing collaborations using online technology with oncology health professionals across the world are also being seen as a silver lining, with valuable sharing of experiences and expertise to improve care, enhance learning, and reduce disparities. Advanced information and communication technologies are seen as vital for such collaborations and could avail efforts in dealing with the ongoing pandemic and potential future crises.


Assuntos
COVID-19 , Institutos de Câncer , Neoplasias , África/epidemiologia , COVID-19/epidemiologia , Institutos de Câncer/organização & administração , Institutos de Câncer/tendências , Acessibilidade aos Serviços de Saúde , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Neoplasias/virologia
7.
Front Oncol ; 9: 660, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396485

RESUMO

Pancreatic cancer is particularly refractory to modern therapies, with a 5-year survival rate for patients at a dismal 8%. One of the significant barriers to effective treatment is the immunosuppressive pancreatic tumor microenvironment and development of resistance to treatment. New treatment options to increase both the survival and quality of life of patients are urgently needed. This study reports on a new non-cannabinoid, non-psychoactive derivative of cannabis, termed FBL-03G, with the potential to treat pancreatic cancer. In vitro results show major increase in apoptosis and consequential decrease in survival for two pancreatic cancer models- Panc-02 and KPC pancreatic cancer cells treated with varying concentrations of FBL-03G and radiotherapy. Meanwhile, in vivo results demonstrate therapeutic efficacy in delaying both local and metastatic tumor progression in animal models with pancreatic cancer when using FBL-03G sustainably delivered from smart radiotherapy biomaterials. Repeated experiments also showed significant (P < 0.0001) increase in survival for animals with pancreatic cancer compared to control cohorts. The findings demonstrate the potential for this new cannabis derivative in the treatment of both localized and advanced pancreatic cancer, providing impetus for further studies toward clinical translation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA