Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
OMICS ; 28(1): 24-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38193774

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has wreaked havoc globally. Beyond the pandemic, the long-term effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus in multiple organ systems are yet to be deciphered. This calls for continued systems science research. Moreover, the host response to SARS-CoV-2 varies person-to-person and gives rise to different degrees of morbidity and mortality. Mass spectrometry (MS) has been a proven asset in studies of the SARS-CoV-2 from an omics systems science lens. To strengthen the proteomics research dedicated to COVID-19, we introduce here a web-based portal, CoVProt. The portal is work in progress and aims for a comprehensive curation of MS-based proteomics data of COVID-19 clinical samples for deep proteomic investigations, data visualization, and easy data accessibility for life sciences innovations and planetary health research community. Currently, CoVProt contains information on 2725 different proteins and 37,125 different peptides from six data sets covering a total of 202 clinical samples. Moreover, all pertinent data sets extracted from the literature have been reanalyzed using a common analysis pipeline developed by combining multiple tools. Going forward, we anticipate that the CoVProt portal will also provide access to the clinical parameters of the patients. The CoVProt (v1.0) portal addresses an existing significant gap to study COVID-19 host proteomics, which, to the best of our knowledge, is the first effort in this direction. We believe that CoVProt is poised to make contributions as a community resource for proteomic applications and aims to broadly support clinical studies to facilitate the discovery of COVID-19 biomarkers and therapeutics with translational potential.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Proteômica/métodos , Espectrometria de Massas , Peptídeos
2.
J Proteome Res ; 22(8): 2608-2619, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37450889

RESUMO

During the COVID-19 pandemic, impaired immunity and medical interventions resulted in cases of secondary infections. The clinical difficulties and dangers associated with secondary infections in patients necessitate the exploration of their microbiome. Metaproteomics is a powerful approach to study the taxonomic composition and functional status of the microbiome under study. In this study, the mass spectrometry (MS)-based data of nasopharyngeal swab samples from COVID-19 patients was used to investigate the metaproteome. We have established a robust bioinformatics workflow within the Galaxy platform, which includes (a) generation of a tailored database of the common respiratory tract pathogens, (b) database search using multiple search algorithms, and (c) verification of the detected microbial peptides. The microbial peptides detected in this study, belong to several opportunistic pathogens such as Streptococcus pneumoniae, Klebsiella pneumoniae, Rhizopus microsporus, and Syncephalastrum racemosum. Microbial proteins with a role in stress response, gene expression, and DNA repair were found to be upregulated in severe patients compared to negative patients. Using parallel reaction monitoring (PRM), we confirmed some of the microbial peptides in fresh clinical samples. MS-based clinical metaproteomics can serve as a powerful tool for detection and characterization of potential pathogens, which can significantly impact the diagnosis and treatment of patients.


Assuntos
COVID-19 , Coinfecção , Humanos , COVID-19/diagnóstico , Pandemias , Peptídeos , Nasofaringe
3.
Viruses ; 15(1)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36680289

RESUMO

The amaranthine scale of the COVID-19 pandemic and unpredictable disease severity is of grave concern. Serological diagnostic aids are an excellent choice for clinicians for rapid and easy prognosis of the disease. To this end, we studied the humoral immune response to SARS-CoV-2 infection to map immunogenic regions in the SARS-CoV-2 proteome at amino acid resolution using a high-density SARS-CoV-2 proteome peptide microarray. The microarray has 4932 overlapping peptides printed in duplicates spanning the entire SARS-CoV-2 proteome. We found 204 and 676 immunogenic peptides against IgA and IgG, corresponding to 137 and 412 IgA and IgG epitopes, respectively. Of these, 6 and 307 epitopes could discriminate between disease severity. The emergence of variants has added to the complexity of the disease. Using the mutation panel available, we could detect 5 and 10 immunogenic peptides against IgA and IgG with mutations belonging to SAR-CoV-2 variants. The study revealed severity-based epitopes that could be presented as potential prognostic serological markers. Further, the mutant epitope immunogenicity could indicate the putative use of these markers for diagnosing variants responsible for the infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Imunidade Humoral , Pandemias , Proteoma , Peptídeos , Epitopos , Imunoglobulina A , Imunoglobulina G , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Antivirais
4.
Drug Discov Today Technol ; 39: 1-12, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34906319

RESUMO

Standing amidst the COVID-19 pandemic, we have faced major medical and economic crisis in recent times which remains to be an unresolved issue till date. Although the scientific community has made significant progress towards diagnosis and understanding the disease; however, effective therapeutics are still lacking. Several omics-based studies, especially proteomics and interactomics, have contributed significantly in terms of identifying biomarker panels that can potentially be used for the disease prognosis. This has also paved the way to identify the targets for drug repurposing as a therapeutic alternative. US Food and Drug Administration (FDA) has set in motion more than 500 drug development programs on an emergency basis, most of them are focusing on repurposed drugs. Remdesivir is one such success of a robust and quick drug repurposing approach. The advancements in omics-based technologies has allowed to explore altered host proteins, which were earlier restricted to only SARS-CoV-2 protein signatures. In this article, we have reviewed major contributions of proteomics and interactomics techniques towards identifying therapeutic targets for COVID-19. Furthermore, in-silico molecular docking approaches to streamline potential drug candidates are also discussed.


Assuntos
COVID-19 , Reposicionamento de Medicamentos , Antivirais/farmacologia , Humanos , Simulação de Acoplamento Molecular , Pandemias , Proteômica , SARS-CoV-2
5.
Front Physiol ; 12: 652799, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995121

RESUMO

The pestilential pathogen SARS-CoV-2 has led to a seemingly ceaseless pandemic of COVID-19. The healthcare sector is under a tremendous burden, thus necessitating the prognosis of COVID-19 severity. This in-depth study of plasma proteome alteration provides insights into the host physiological response towards the infection and also reveals the potential prognostic markers of the disease. Using label-free quantitative proteomics, we performed deep plasma proteome analysis in a cohort of 71 patients (20 COVID-19 negative, 18 COVID-19 non-severe, and 33 severe) to understand the disease dynamics. Of the 1200 proteins detected in the patient plasma, 38 proteins were identified to be differentially expressed between non-severe and severe groups. The altered plasma proteome revealed significant dysregulation in the pathways related to peptidase activity, regulated exocytosis, blood coagulation, complement activation, leukocyte activation involved in immune response, and response to glucocorticoid biological processes in severe cases of SARS-CoV-2 infection. Furthermore, we employed supervised machine learning (ML) approaches using a linear support vector machine model to identify the classifiers of patients with non-severe and severe COVID-19. The model used a selected panel of 20 proteins and classified the samples based on the severity with a classification accuracy of 0.84. Putative biomarkers such as angiotensinogen and SERPING1 and ML-derived classifiers including the apolipoprotein B, SERPINA3, and fibrinogen gamma chain were validated by targeted mass spectrometry-based multiple reaction monitoring (MRM) assays. We also employed an in silico screening approach against the identified target proteins for the therapeutic management of COVID-19. We shortlisted two FDA-approved drugs, namely, selinexor and ponatinib, which showed the potential of being repurposed for COVID-19 therapeutics. Overall, this is the first most comprehensive plasma proteome investigation of COVID-19 patients from the Indian population, and provides a set of potential biomarkers for the disease severity progression and targets for therapeutic interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA