Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Stem Cells Transl Med ; 5(11): 1550-1561, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27400790

RESUMO

: Fast remyelination by endogenous oligodendrocyte precursor cells (OPCs) is essential to prevent axonal and subsequent retrograde neuronal degeneration in demyelinating lesions in multiple sclerosis (MS). In chronic lesions, however, the remyelination capacity of OPCs becomes insufficient. Cell therapy with exogenous remyelinating cells may be a strategy to replace the failing endogenous OPCs. Here, we differentiated human induced pluripotent stem cells (hiPSCs) into OPCs and validated their proper functionality in vitro as well as in vivo in mouse models for MS. Next, we intracerebrally injected hiPSC-derived OPCs in a nonhuman primate (marmoset) model for progressive MS; the grafted OPCs specifically migrated toward the MS-like lesions in the corpus callosum where they myelinated denuded axons. hiPSC-derived OPCs may become the first therapeutic tool to address demyelination and neurodegeneration in the progressive forms of MS. SIGNIFICANCE: This study demonstrates for the first time that human induced pluripotent stem cell (iPSC)-derived oligodendrocyte precursor cells (OPCs), after intracortical implantation in a nonhuman primate model for progressive multiple sclerosis (MS), migrate to the lesions and remyelinate denuded axons. These findings imply that human iPSC-OPCs can be a therapeutic tool for MS. The results of this feasibility study on the potential use of hiPSC-derived OPCs are of great importance for all MS researchers focusing on the stimulation of remyelination in MS patients. Further optimization and research on practical issues related to the safe production and administration of iPSC-derived cell grafts will likely lead to a first clinical trial in a small group of secondary progressive MS patients. This would be the first specific therapeutic approach aimed at restoring myelination and rescuing axons in MS patients, since there is no treatment available for this most debilitating aspect of MS.

2.
PLoS One ; 11(5): e0155317, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27171274

RESUMO

In oligodendrocytes (OLGs), an indirect, transcytotic pathway is mediating transport of de novo synthesized PLP, a major myelin specific protein, from the apical-like plasma membrane to the specialized basolateral-like myelin membrane to prevent its premature compaction. MAL is a well-known regulator of polarized trafficking in epithelial cells, and given its presence in OLGs it was therefore of interest to investigate whether MAL played a similar role in PLP transport in OLGs, taking into account its timely expression in these cells. Our data revealed that premature expression of mCherry-MAL in oligodendrocyte progenitor cells interfered with terminal OLG differentiation, although myelin membrane formation per se was not impaired. In fact, also PLP transport to myelin membranes via the cell body plasma membrane was unaffected. However, the typical shift of PLP from TX-100-insoluble membrane domains to CHAPS-resistant, but TX-100-soluble membrane domains, seen in the absence of MAL expression, is substantially reduced upon expression of the MAL protein. Interestingly, not only in vitro, but also in developing brain a strongly diminished shift from TX-100 resistant to TX-100 soluble domains was observed. Consistently, the MAL-expression mediated annihilation of the typical membrane microdomain shift of PLP is also reflected by a loss of the characteristic surface expression profile of conformation-sensitive anti-PLP antibodies. Hence, these findings suggest that MAL is not involved in vesicular PLP trafficking to either the plasma membrane and/or the myelin membrane as such. Rather, we propose that MAL may regulate PLP's distribution into distinct membrane microdomains that allow for lateral diffusion of PLP, directly from the plasma membrane to the myelin membrane once the myelin sheath has been assembled.


Assuntos
Microdomínios da Membrana/metabolismo , Proteína Proteolipídica de Mielina/metabolismo , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Corpo Celular/efeitos dos fármacos , Corpo Celular/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Detergentes/farmacologia , Feminino , Células Hep G2 , Humanos , Microdomínios da Membrana/efeitos dos fármacos , Modelos Biológicos , Octoxinol/farmacologia , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos Wistar , Solubilidade , Células-Tronco/citologia , Células-Tronco/metabolismo
3.
Mol Cell Biol ; 35(4): 675-87, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25512606

RESUMO

Myelination of axons by oligodendrocytes is essential for saltatory nerve conduction. To form myelin membranes, a coordinated synthesis and subsequent polarized transport of myelin components are necessary. Here, we show that as part of the mechanism to establish membrane polarity, oligodendrocytes exploit a polarized distribution of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery components syntaxins 3 and 4, localizing to the cell body and the myelin membrane, respectively. Our data further reveal that the expression of myelin basic protein (MBP), a myelin-specific protein that is synthesized "on site" after transport of its mRNA, depends on the correct functioning of the SNARE machinery, which is not required for mRNA granule assembly and transport per se. Thus, downregulation and overexpression of syntaxin 4 but not syntaxin 3 in oligodendrocyte progenitor cells but not immature oligodendrocytes impeded MBP mRNA transcription, thereby preventing MBP protein synthesis. The expression and localization of another myelin-specific protein, proteolipid protein (PLP), was unaltered. Strikingly, conditioned medium obtained from developing oligodendrocytes was able to rescue the block of MBP mRNA transcription in syntaxin 4-downregulated cells. These findings indicate that the initiation of the biosynthesis of MBP mRNA relies on a syntaxin 4-dependent mechanism, which likely involves activation of an autocrine signaling pathway.


Assuntos
Comunicação Autócrina/genética , Gânglios Espinais/metabolismo , Proteína Básica da Mielina/genética , Oligodendroglia/metabolismo , Proteínas Qa-SNARE/genética , RNA Mensageiro/genética , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Axônios/ultraestrutura , Meios de Cultivo Condicionados/farmacologia , Embrião de Mamíferos , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteína Básica da Mielina/metabolismo , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Cultura Primária de Células , Proteínas Qa-SNARE/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Transcrição Gênica
4.
Glia ; 62(6): 927-42, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24578319

RESUMO

In the central nervous system, the extracellular matrix (ECM) compound laminin-2, present on developing axons, is essential in regulating oligodendrocyte (OLG) maturation. For example, laminin-2 is involved in mediating interactions between integrins and growth factors, initially localizing in separate membrane microdomains. The galactosphingolipid sulfatide is an important constituent of these microdomains and may serve as a receptor for laminin-2. Here, we investigated whether sulfatide interferes with ECM-integrin interactions and, in this manner, modulates OLG maturation. Our data reveal that disruption of laminin-2-sulfatide interactions impeded OLG differentiation and myelin-like membrane formation. On laminin-2, but not on (re)myelination-inhibiting fibronectin, sulfatide laterally associated with integrin α6 in membrane microdomains. Sulfatide was partly excluded from membrane microdomains on fibronectin, thereby likely precluding laminin-2-mediated myelination. Anti-sulfatide antibodies disrupted integrin α6-PDGFαR interactions on laminin-2 and induced demyelination in myelinated spheroid cultures, but intriguingly stimulated myelin-like membrane formation on fibronectin. Taken together, these findings highlight the importance of laminin-sulfatide interactions in the formation of functional membrane microdomains essential for myelination. Thus, laminin-sulfatide interactions might control the asynchronous localized differentiation of OLGs, thereby allowing myelination to be triggered by axonal demand. Given the accumulation of fibronectin in multiple sclerosis lesions, the findings also provide a molecular rationale for the potential of anti-sulfatide antibodies to trigger quiescent endogenous OLG progenitor cells in axon remyelination. GLIA 2014;62:927-942.


Assuntos
Crescimento Celular , Proliferação de Células/fisiologia , Matriz Extracelular/fisiologia , Sulfoglicoesfingolipídeos/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Crescimento Celular/efeitos dos fármacos , Linhagem Celular , Matriz Extracelular/efeitos dos fármacos , Laminina/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Oligodendroglia , Ratos , Ratos Wistar
5.
PLoS Biol ; 11(12): e1001739, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24358023

RESUMO

The development and maintenance of polarized epithelial tissue requires a tightly controlled orientation of mitotic cell division relative to the apical polarity axis. Hepatocytes display a unique polarized architecture. We demonstrate that mitotic hepatocytes asymmetrically segregate their apical plasma membrane domain to the nascent daughter cells. The non-polarized nascent daughter cell can form a de novo apical domain with its new neighbor. This asymmetric segregation of apical domains is facilitated by a geometrically distinct "apicolateral" subdomain of the lateral surface present in hepatocytes. The polarity protein partitioning-defective 1/microtubule-affinity regulating kinase 2 (Par1b/MARK2) translates this positional landmark to cortical polarity by promoting the apicolateral accumulation of Leu-Gly-Asn repeat-enriched protein (LGN) and the capture of nuclear mitotic apparatus protein (NuMA)-positive astral microtubules to orientate the mitotic spindle. Proliferating hepatocytes thus display an asymmetric inheritance of their apical domains via a mechanism that involves Par1b and LGN, which we postulate serves the unique tissue architecture of the developing liver parenchyma.


Assuntos
Membrana Celular/fisiologia , Polaridade Celular/fisiologia , Hepatócitos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Metaloproteases/fisiologia , Proteínas Mitocondriais/fisiologia , Fuso Acromático/fisiologia , Proliferação de Células , Células Hep G2/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA