Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 52016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27725089

RESUMO

Metabolic studies suggest that the absorptive capacity of the small intestine for fructose is limited, though the molecular mechanisms controlling this process remain unknown. Here we demonstrate that thioredoxin-interacting protein (Txnip), which regulates glucose homeostasis in mammals, binds to fructose transporters and promotes fructose absorption by the small intestine. Deletion of Txnip in mice reduced fructose transport into the peripheral bloodstream and liver, as well as the severity of adverse metabolic outcomes resulting from long-term fructose consumption. We also demonstrate that fructose consumption induces expression of Txnip in the small intestine. Diabetic mice had increased expression of Txnip in the small intestine as well as enhanced fructose uptake and transport into the hepatic portal circulation. The deletion of Txnip in mice abolished the diabetes-induced increase in fructose absorption. Our results indicate that Txnip is a critical regulator of fructose metabolism and suggest that a diabetic state can promote fructose uptake.


Assuntos
Adsorção , Proteínas de Transporte/metabolismo , Diabetes Mellitus/fisiopatologia , Frutose/metabolismo , Tiorredoxinas/metabolismo , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Proc Natl Acad Sci U S A ; 110(45): 18321-6, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24145432

RESUMO

Juvenile hormone (JH) coordinates timing of female reproductive maturation in most insects. In Drosophila melanogaster, JH plays roles in both mating and egg maturation. However, very little is known about the molecular pathways associated with mating. Our behavioral analysis of females genetically lacking the corpora allata, the glands that produce JH, showed that they were courted less by males and mated later than control females. Application of the JH mimic, methoprene, to the allatectomized females just after eclosion rescued both the male courtship and the mating delay. Our studies of the null mutants of the JH receptors, Methoprene tolerant (Met) and germ cell-expressed (gce), showed that lack of Met in Met(27) females delayed the onset of mating, whereas lack of Gce had little effect. The Met(27) females were shown to be more attractive but less behaviorally receptive to copulation attempts. The behavioral but not the attractiveness phenotype was rescued by the Met genomic transgene. Analysis of the female cuticular hydrocarbon profiles showed that corpora allata ablation caused a delay in production of the major female-specific sex pheromones (the 7,11-C27 and -C29 dienes) and a change in the cuticular hydrocarbon blend. In the Met(27) null mutant, by 48 h, the major C27 diene was greatly increased relative to wild type. In contrast, the gce(2.5k) null mutant females were courted similarly to control females despite changes in certain cuticular hydrocarbons. Our findings indicate that JH acts primarily via Met to modulate the timing of onset of female sex pheromone production and mating.


Assuntos
Drosophila melanogaster/fisiologia , Hormônios Juvenis/metabolismo , Atrativos Sexuais/biossíntese , Comportamento Sexual Animal/fisiologia , Análise de Variância , Animais , Corpora Allata/metabolismo , Feminino , Hidrocarbonetos/metabolismo , Hormônios Juvenis/deficiência , Masculino , Fenotiazinas/metabolismo
3.
PLoS Genet ; 3(10): 1950-64, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17953484

RESUMO

Spinocerebellar ataxia type-3 (SCA3) is among the most common dominantly inherited ataxias, and is one of nine devastating human neurodegenerative diseases caused by the expansion of a CAG repeat encoding glutamine within the gene. The polyglutamine domain confers toxicity on the protein Ataxin-3 leading to neuronal dysfunction and loss. Although modifiers of polyglutamine toxicity have been identified, little is known concerning how the modifiers function mechanistically to affect toxicity. To reveal insight into spinocerebellar ataxia type-3, we performed a genetic screen in Drosophila with pathogenic Ataxin-3-induced neurodegeneration and identified 25 modifiers defining 18 genes. Despite a variety of predicted molecular activities, biological analysis indicated that the modifiers affected protein misfolding. Detailed mechanistic studies revealed that some modifiers affected protein accumulation in a manner dependent on the proteasome, whereas others affected autophagy. Select modifiers of Ataxin-3 also affected tau, revealing common pathways between degeneration due to distinct human neurotoxic proteins. These findings provide new insight into molecular pathways of polyQ toxicity, defining novel targets for promoting neuronal survival in human neurodegenerative disease.


Assuntos
Genoma , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Animais , Ataxina-3 , Cruzamentos Genéticos , Drosophila melanogaster , Humanos , Modelos Genéticos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Peptídeos/química , Fagocitose , Complexo de Endopeptidases do Proteassoma/metabolismo , Desnaturação Proteica , Dobramento de Proteína , Ubiquitina/metabolismo
4.
Cell Cycle ; 5(24): 2835-8, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17172864

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs that regulate the expression of target transcript mRNAs. Many miRNAs have been defined, however their roles and the processes influenced by miRNA pathways are still being elucidated. A role for miRNAs in development and cancer has been described. We recently isolated the miRNA bantam (ban) in a genetic screen for modulators of pathogenicity of a human neurodegenerative disease model in Drosophila. These studies showed that upregulation of ban mitigates degeneration induced by the pathogenic polyglutamine (polyQ) protein Ataxin-3, which is mutated in the human polyglutamine disease spinocerebellar ataxia type 3 (SCA3). To address the broader role for miRNAs in neuroprotection, we also showed that loss of all miRNAs, by dicer mutation, dramatically enhances pathogenic polyQ protein toxicity in flies and in human HeLa cells. These studies suggest that miRNAs may be important for neuronal survival in the context of human neurodegenerative disease. These studies provide the foundation to define the miRNAs involved in neurodegenerative disease, and the biological pathways affected.


Assuntos
MicroRNAs/metabolismo , Degeneração Neural/genética , Degeneração Neural/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Animais , Ciclinas/metabolismo , Modelos Animais de Doenças , Drosophila/efeitos dos fármacos , Proteínas de Drosophila/metabolismo , Olho/citologia , Olho/patologia , Células HeLa , Humanos , MicroRNAs/genética , Degeneração Neural/induzido quimicamente , Degeneração Neural/metabolismo , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/genética , Peptídeos/toxicidade , Expansão das Repetições de Trinucleotídeos/genética
5.
Mol Cell ; 24(1): 157-63, 2006 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-17018300

RESUMO

Nine human neurodegenerative diseases are due to expansion of a CAG repeat- encoding glutamine within the open reading frame of the respective genes. Polyglutamine (polyQ) expansion confers dominant toxicity, resulting in neuronal degeneration. MicroRNAs (miRNAs) have been shown to modulate programmed cell death during development. To address whether miRNA pathways play a role in neurodegeneration, we tested whether genes critical for miRNA processing modulated toxicity induced by the spinocerebellar ataxia type 3 (SCA3) protein. These studies revealed a striking enhancement of polyQ toxicity upon reduction of miRNA processing in Drosophila and human cells. In parallel genetic screens, we identified the miRNA bantam (ban) as a potent modulator of both polyQ and tau toxicity in flies. Our studies suggest that ban functions downstream of toxicity of the SCA3 protein, to prevent degeneration. These findings indicate that miRNA pathways dramatically modulate polyQ- and tau-induced neurodegeneration, providing the foundation for new insight into therapeutics.


Assuntos
MicroRNAs/fisiologia , Neurônios/metabolismo , Peptídeos/genética , Expansão das Repetições de Trinucleotídeos , Animais , Animais Geneticamente Modificados/metabolismo , Ataxina-3 , Ciclinas/fisiologia , DNA/química , Drosophila/anatomia & histologia , Drosophila/genética , Drosophila/fisiologia , Proteínas de Drosophila/fisiologia , Células HeLa , Humanos , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fases de Leitura Aberta , Peptídeos/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Retina/anatomia & histologia , Proteínas tau/metabolismo
6.
Annu Rev Genet ; 39: 153-71, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16285856

RESUMO

Among many achievements in the neurodegeneration field in the past decade, two require special attention due to the huge impact on our understanding of molecular and cellular pathogenesis of human neurodegenerative diseases. First is defining specific mutations in familial neurodegenerative diseases and second is modeling these diseases in easily manipulable model organisms including the fruit fly, nematode, and yeast. The power of these genetic systems has revealed many genetic factors involved in the various pathways affected, as well as provided potential drug targets for therapeutics. This review focuses on fruit fly models of human neurodegenerative diseases, with emphasis on how fly models have provided new insights into various aspects of human diseases.


Assuntos
Modelos Animais de Doenças , Drosophila melanogaster , Doenças Neurodegenerativas , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Repetições de Trinucleotídeos/genética , Repetições de Trinucleotídeos/fisiologia
7.
Mol Cell ; 18(1): 37-48, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15808507

RESUMO

Two central issues in polyglutamine-induced neurodegeneration are the influence of the normal function of the disease protein and modulation by protein quality control pathways. By using Drosophila, we now directly link host protein function and disease pathogenesis to ubiquitin pathways in the polyglutamine disease spinocerebellar ataxia type 3 (SCA3). Normal human ataxin-3--a polyubiquitin binding protein with ubiquitin protease activity--is a striking suppressor of polyglutamine neurodegeneration in vivo. This suppressor activity requires ubiquitin-associated activities of the protein and is dependent upon proteasome function. Our results highlight the critical importance of host protein function in SCA3 disease and a potential therapeutic role of ataxin-3 activity for polyglutamine disorders.


Assuntos
Degeneração Neural/genética , Degeneração Neural/prevenção & controle , Proteínas do Tecido Nervoso/genética , Peptídeos/toxicidade , Ubiquitina/metabolismo , Animais , Animais Geneticamente Modificados , Ataxina-3 , Drosophila melanogaster/genética , Humanos , Doença de Machado-Joseph/genética , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares , Polimorfismo Genético , Proteínas Repressoras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA