Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Mol Phylogenet Evol ; 188: 107910, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37640170

RESUMO

Keratoisididae is a globally distributed, and exclusively deep-sea, family of octocorals that contains species and genera that are polyphyletic. An alphanumeric system, based on a three-gene-region phylogeny, is widely used to describe the biodiversity within this family. That phylogeny identified 12 major groups although it did not have enough signal to explore the relationships among groups. Using increased phylogenomic resolution generated from Ultraconserved Elements and exons (i.e. conserved elements), we aim to resolve deeper nodes within the family and investigate the relationships among those predefined groups. In total, 109 libraries of conserved elements were generated from individuals representing both the genetic and morphological diversity of our keratoisidids. In addition, the conserved element data of 12 individuals from previous studies were included. Our taxon sampling included 11 of the 12 keratoisidid groups. We present two phylogenies, constructed from a 75% (231 loci) and 50% (1729 loci) taxon occupancy matrix respectively, using both Maximum Likelihood and Multiple Species Coalescence methods. These trees were congruent at deep nodes. As expected, S1 keratoisidids were recovered as a well-supported sister clade to the rest of the bamboo corals. S1 corals do not share the same mitochondrial gene arrangement found in other members of Keratoisididae. All other bamboo corals were recovered within two major clades. Clade I comprises individuals assigned to alphanumeric groups B1, C1, D1&D2, F1, H1, I4, and J3 while Clade II contains representatives from A1, I1, and M1. By combining genomics with already published morphological data, we provide evidence that group H1 is not monophyletic, and that the division between other groups - D1 and D2, and A1 and M1 - needs to be reconsidered. Overall, there is a lack of robust morphological markers within Keratoisididae, but subtle characters such as sclerite microstructure and ornamentation seem to be shared within groups and warrant further investigation as taxonomically diagnostic characters.


Assuntos
Antozoários , Animais , Filogenia , Antozoários/genética , Evolução Biológica , Biodiversidade , Éxons
3.
Mol Ecol Resour ; 22(2): 519-538, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34398515

RESUMO

Advances in high-throughput sequencing (HTS) are revolutionizing monitoring in marine environments by enabling rapid, accurate and holistic detection of species within complex biological samples. Research institutions worldwide increasingly employ HTS methods for biodiversity assessments. However, variance in laboratory procedures, analytical workflows and bioinformatic pipelines impede the transferability and comparability of results across research groups. An international experiment was conducted to assess the consistency of metabarcoding results derived from identical samples and primer sets using varying laboratory procedures. Homogenized biofouling samples collected from four coastal locations (Australia, Canada, New Zealand and the USA) were distributed to 12 independent laboratories. Participants were asked to follow one of two HTS library preparation workflows. While DNA extraction, primers and bioinformatic analyses were purposefully standardized to allow comparison, many other technical variables were allowed to vary among laboratories (amplification protocols, type of instrument used, etc.). Despite substantial variation observed in raw results, the primary signal in the data was consistent, with the samples grouping strongly by geographical origin for all data sets. Simple post hoc data clean-up by removing low-quality samples gave the best improvement in sample classification for nuclear 18S rRNA gene data, with an overall 92.81% correct group attribution. For mitochondrial COI gene data, the best classification result (95.58%) was achieved after correction for contamination errors. The identified critical methodological factors that introduced the greatest variability (preservation buffer, sample defrosting, template concentration, DNA polymerase, PCR enhancer) should be of great assistance in standardizing future biodiversity studies using metabarcoding.


Assuntos
Código de Barras de DNA Taxonômico , Laboratórios , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Ribossômico 18S
4.
PLoS One ; 14(12): e0225645, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31790447

RESUMO

Coralline algae (Corallinophycideae) are calcifying red algae that are foundation species in euphotic marine habitats globally. In recent years, corallines have received increasing attention due to their vulnerability to global climate change, in particular ocean acidification and warming, and because of the range of ecological functions that coralline algae provide, including provisioning habitat, influencing settlement of invertebrate and other algal species, and stabilising reef structures. Many of the ecological roles corallines perform, as well as their responses to stressors, have been demonstrated to be species-specific. In order to understand the roles and responses of coralline algae, it is essential to be able to reliably distinguish individual species, which are frequently morphologically cryptic. The aim of this study was to document the diversity and distribution of coralline algae in the New Zealand region using DNA based phylogenetic methods, and examine this diversity in a broader global context, discussing the implications and direction for future coralline algal research. Using three independent species delimitation methods, a total of 122 species of coralline algae were identified across the New Zealand region with high diversity found both regionally and also when sampling at small local spatial scales. While high diversity identified using molecular methods mirrors recent global discoveries, what distinguishes the results reported here is the large number of taxa (115) that do not resolve with type material from any genus and/or species. The ability to consistently and accurately distinguish species, and the application of authoritative names, are essential to ensure reproducible science in all areas of research into ecologically important yet vulnerable coralline algae taxa.


Assuntos
Biodiversidade , Recifes de Corais , Monitorização de Parâmetros Ecológicos/métodos , Rodófitas/fisiologia , Mudança Climática , Geografia , Concentração de Íons de Hidrogênio , Nova Zelândia , Oceanos e Mares , Filogenia , Água do Mar/química , Temperatura
5.
Biomarkers ; 23(5): 453-461, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29460649

RESUMO

CONTEXT: Human health is complex and multifaceted; there is a need for biomarkers that reflect the multidimensional nature of health. OBJECTIVE: To identify potential epigenomic biomarkers of health in women aged 18-40 participating in a six-month lifestyle intervention, next level health. MATERIALS AND METHODS: Methylation data were obtained by reduced representation bisulphite sequencing of 21 female intervention participants as well as three non-participants. The Differential Methylation Analysis Package (DMAP) was used to investigate inter- and intra-individual variability and to identify potential targets of transient epigenetic control in the population studied. RESULTS: Eleven genes were identified as significantly differentially methylated post- intervention in all 21 participants. 1884 genomic locations were found to be differentially methylated amongst the total female population studied representing potential epigenomic biomarkers. CONCLUSIONS: The ability to demonstrate epigenetic changes arising from a lifestyle intervention can provide key information on the relationship between gene regulation, human behaviour and health.


Assuntos
Epigenômica , Estilo de Vida , Adolescente , Adulto , Comportamento , Biomarcadores , Metilação de DNA , Feminino , Regulação da Expressão Gênica/fisiologia , Saúde , Humanos , Adulto Jovem
6.
Mol Phylogenet Evol ; 73: 106-18, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24508698

RESUMO

The octocorals of the Ellisellidae constitute a diverse and widely distributed family with subdivisions into genera based on colonial growth forms. Branching patterns are repeated in several genera and congeners often display region-specific variations in a given growth form. We examined the systematic patterns of ellisellid genera and the evolution of branching form diversity using molecular phylogenetic and ancestral morphological reconstructions. Six of eight included genera were found to be polyphyletic due to biogeographical incompatibility with current taxonomic assignments and the creation of at least six new genera plus several reassignments among existing genera is necessary. Phylogenetic patterns of diversification of colony branching morphology displayed a similar transformation order in each of the two primary ellisellid clades, with a sea fan form estimated as the most-probable common ancestor with likely origins in the Indo-Pacific region. The observed parallelism in evolution indicates the existence of a constraint on the genetic elements determining ellisellid colonial morphology. However, the lack of correspondence between levels of genetic divergence and morphological diversity among genera suggests that future octocoral studies should focus on the role of changes in gene regulation in the evolution of branching patterns.


Assuntos
Antozoários/anatomia & histologia , Antozoários/classificação , Evolução Molecular , Filogenia , Animais , Antozoários/genética , Antozoários/crescimento & desenvolvimento , Oceanos e Mares , Filogeografia , Análise de Sequência de DNA
7.
BMC Evol Biol ; 11: 228, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21801381

RESUMO

BACKGROUND: The mitochondrial genome of the Octocorallia has several characteristics atypical for metazoans, including a novel gene suggested to function in DNA repair. This mtMutS gene is favored for octocoral molecular systematics, due to its high information content. Several hypotheses concerning the origins of mtMutS have been proposed, and remain equivocal, although current weight of support is for a horizontal gene transfer from either an epsilonproteobacterium or a large DNA virus. Here we present new and compelling evidence on the evolutionary origin of mtMutS, and provide the very first data on its activity, functional capacity and stability within the octocoral mitochondrial genome. RESULTS: The mtMutS gene has the expected conserved amino acids, protein domains and predicted tertiary protein structure. Phylogenetic analysis indicates that mtMutS is not a member of the MSH family and therefore not of eukaryotic origin. MtMutS clusters closely with representatives of the MutS7 lineage; further support for this relationship derives from the sharing of a C-terminal endonuclease domain that confers a self-contained mismatch repair function. Gene expression analyses confirm that mtMutS is actively transcribed in octocorals. Rates of mitochondrial gene evolution in mtMutS-containing octocorals are lower than in their hexacoral sister-group, which lacks the gene, although paradoxically the mtMutS gene itself has higher rates of mutation than other octocoral mitochondrial genes. CONCLUSIONS: The octocoral mtMutS gene is active and codes for a protein with all the necessary components for DNA mismatch repair. A lower rate of mitochondrial evolution, and the presence of a nicking endonuclease domain, both indirectly support a theory of self-sufficient DNA mismatch repair within the octocoral mitochondrion. The ancestral affinity of mtMutS to non-eukaryotic MutS7 provides compelling support for an origin by horizontal gene transfer. The immediate vector of transmission into octocorals can be attributed to either an epsilonproteobacterium in an endosymbiotic association or to a viral infection, although DNA viruses are not currently known to infect both bacteria and eukaryotes, nor mitochondria in particular. In consolidating the first known case of HGT into an animal mitochondrial genome, these findings suggest the need for reconsideration of the means by which metazoan mitochondrial genomes evolve.


Assuntos
Antozoários/genética , Reparo do DNA/fisiologia , Evolução Molecular , Transferência Genética Horizontal/genética , Genoma Mitocondrial/genética , Modelos Moleculares , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Sequência de Aminoácidos , Animais , Biologia Computacional , Reparo do DNA/genética , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Mutação/genética , Alinhamento de Sequência , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA