Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Open Forum Infect Dis ; 3(1): ofw002, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26925427

RESUMO

Background. Escherichia coli is a highly clonal pathogen. Extraintestinal isolates belong to a limited number of genetically related groups, which often exhibit characteristic antimicrobial resistance profiles. Methods. We developed a rapid clonotyping method for extraintestinal E coli based on detection of the presence or absence of 7 single nucleotide polymorphisms (SNPs) within 2 genes (fumC and fimH). A reference set of 2559 E coli isolates, primarily of urinary origin, was used to predict the resolving power of the 7-SNP-based typing method, and 582 representative strains from this set were used to evaluate test robustness. Results. Fifty-four unique SNP combinations ("septatypes") were identified in the reference strains. These septatypes yielded a clonal group resolution power on par with that of traditional multilocus sequence typing. In 72% of isolates, septatype identity predicted sequence type identity with at least 90% (mean, 97%) accuracy. Most septatypes exhibited highly distinctive antimicrobial susceptibility profiles. The 7-SNP-based test could be performed with high specificity and sensitivity using single or multiplex conventional polymerase chain reaction (PCR) and quantitative PCR. In the latter format, E coli presence and septatype identity were determined directly in urine specimens within 45 minutes with bacterial loads as low as 10(2) colony-forming units/mL and, at clinically significant bacterial loads, with 100% sensitivity and specificity. Conclusions. 7-SNP-based typing of E coli can be used for both epidemiological studies and clinical diagnostics, which could greatly improve the empirical selection of antimicrobial therapy.

2.
Int J Med Microbiol ; 304(8): 1247-57, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25455219

RESUMO

The present study was carried out to evaluate the prevalence of the clonal subgroup O16:H5-ST131 and the H30 and H30-Rx subclones among E. coli isolates causing extraintestinal infections and to know their virulence potential. The ST131 clonal group accounted for 490 (16%) of the 2995 isolates obtained from clinical samples in five Spanish hospitals during the study period (2005-2012). Among those 490 ST131 isolates, 456 belonged to serotype O25b:H4, 27 to O16:H5 and seven were O-non-typeable:H4 (ONT:H4). All 27 O16:H5 isolates showed fimH41, whereas fimH30 and fimH22 alleles were the most frequently detected among O25b:H4 isolates. The majority (381/490; 78%) of ST131 isolates belonged to H30 subclone, and 302 of 381 (79%) H30 isolates belonged to the H30-Rx subclone. Of the 27 O16:H5 isolates, 48% produced CTX-M-14; however, none produced CTX-M-15. In contrast, 46% of O25b:H4 isolates produced CTX-M-15 while only 2% produced CTX-M-14. More than a half of the O16:H5 isolates (56%) showed the ExPEC status which was significantly more prevalent within O25b:H4 isolates (81%) (P<0.01), especially among H30-Rx (97%) isolates. In the present study, a modified virotype scheme was applied within which approximately half (52%) of the O16:H5 isolates showed the C1 specific virotype. Despite their low virulence-gene score (mean of virulence genes 6.4 versus 8.5 in O25b:H4 isolates), six out of the 10 O16:H5 isolates assayed showed high virulence in the mouse model of sepsis (killed 90-100% of mice challenged). Furthermore, four O16:H5 isolates of virotypes A and C1, carrying K2 variant of group II capsule, showed lethality at 24h. Thus, certain O16:H5 fimH41 isolates show a similar in vivo virulence to that reported with the highly virulent O25b:H4 H30-Rx isolates (Mora et al., PLOS ONE 2014, e87025), supporting their potential virulence for humans.


Assuntos
Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli/classificação , Escherichia coli/genética , Tipagem Molecular , Sorogrupo , Fatores de Virulência/genética , Animais , Modelos Animais de Doenças , Escherichia coli/isolamento & purificação , Feminino , Genótipo , Humanos , Camundongos , Epidemiologia Molecular , Sepse/microbiologia , Espanha/epidemiologia , Análise de Sobrevida , Virulência
3.
J Clin Microbiol ; 51(9): 2991-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23843485

RESUMO

The ability to identify bacterial pathogens at the subspecies level in clinical diagnostics is currently limited. We investigated whether splitting Escherichia coli species into clonal groups (clonotypes) predicts antimicrobial susceptibility or clinical outcome. A total of 1,679 extraintestinal E. coli isolates (collected from 2010 to 2012) were collected from one German and 5 U.S. clinical microbiology laboratories. Clonotype identity was determined by fumC and fimH (CH) sequencing. The associations of clonotype with antimicrobial susceptibility and clinical variables were evaluated. CH typing divided the isolates into >200 CH clonotypes, with 93% of the isolates belonging to clonotypes with ≥ 2 isolates. Antimicrobial susceptibility varied substantially among clonotypes but was consistent across different locations. Clonotype-guided antimicrobial selection significantly reduced "drug-bug" mismatch compared to that which occurs with the use of conventional empirical therapy. With trimethoprim-sulfamethoxazole and fluoroquinolones, the drug-bug mismatch was predicted to decrease 62% and 78%, respectively. Recurrent or persistent urinary tract infection and clinical sepsis were significantly correlated with specific clonotypes, especially with CH40-30 (also known as H30), a recently described clonotype within sequence type 131 (ST131). We were able to clonotype directly from patient urine samples within 1 to 3 h of obtaining the specimen. In E. coli, subspecies-level identification by clonotyping can be used to significantly improve empirical predictions of antimicrobial susceptibility and clinical outcomes in a timely manner.


Assuntos
Farmacorresistência Bacteriana , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/microbiologia , Escherichia coli/classificação , Escherichia coli/efeitos dos fármacos , Tipagem Molecular , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , Criança , Pré-Escolar , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/tratamento farmacológico , Proteínas de Escherichia coli/genética , Feminino , Alemanha , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Análise de Sequência de DNA , Resultado do Tratamento , Estados Unidos , Adulto Jovem
4.
J Infect Dis ; 207(6): 919-28, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23288927

RESUMO

BACKGROUND: Fluoroquinolone-resistant Escherichia coli are increasingly prevalent. Their clonal origins--potentially critical for control efforts--remain undefined. METHODS: Antimicrobial resistance profiles and fine clonal structure were determined for 236 diverse-source historical (1967-2009) E. coli isolates representing sequence type ST131 and 853 recent (2010-2011) consecutive E. coli isolates from 5 clinical laboratories in Seattle, Washington, and Minneapolis, Minnesota. Clonal structure was resolved based on fimH sequence (fimbrial adhesin gene: H subclone assignments), multilocus sequence typing, gyrA and parC sequence (fluoroquinolone resistance-determining loci), and pulsed-field gel electrophoresis. RESULTS: Of the recent fluoroquinolone-resistant clinical isolates, 52% represented a single ST131 subclonal lineage, H30, which expanded abruptly after 2000. This subclone had a unique and conserved gyrA/parC allele combination, supporting its tight clonality. Unlike other ST131 subclones, H30 was significantly associated with fluoroquinolone resistance and was the most prevalent subclone among current E. coli clinical isolates, overall (10.4%) and within every resistance category (11%-52%). CONCLUSIONS: Most current fluoroquinolone-resistant E. coli clinical isolates, and the largest share of multidrug-resistant isolates, represent a highly clonal subgroup that likely originated from a single rapidly expanded and disseminated ST131 strain. Focused attention to this strain will be required to control the fluoroquinolone and multidrug-resistant E. coli epidemic.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/microbiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Fluoroquinolonas/farmacologia , Adesinas de Escherichia coli/genética , Evolução Clonal , DNA Girase/genética , DNA Topoisomerase IV/genética , DNA Bacteriano/genética , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Proteínas de Fímbrias/genética , Humanos , Epidemiologia Molecular , Tipagem de Sequências Multilocus
5.
J Bacteriol ; 195(2): 231-42, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23123908

RESUMO

The contribution of homologous exchange (recombination) of core genes in the adaptive evolution of bacterial pathogens is not well understood. To investigate this, we analyzed fully assembled genomes of two Escherichia coli strains from sequence type 131 (ST131), a clonal group that is both the leading cause of extraintestinal E. coli infections and the main source of fluoroquinolone-resistant E. coli. Although the sequences of each of the seven multilocus sequence typing genes were identical in the two ST131 isolates, the strains diverged from one another by homologous recombination that affected at least 9% of core genes. This was on a par with the contribution to genomic diversity of horizontal gene transfer and point gene mutation. The genomic positions of recombinant and mobile genetic regions were partially linked, suggesting their concurrent occurrence. One of the genes affected by homologous recombination was fimH, which encodes mannose-specific type 1 fimbrial adhesin, resulting in functionally distinct copies of the gene in ST131 strains. One strain, a uropathogenic isolate, had a pathoadaptive variant of fimH that was acquired by homologous replacement into the commensal strain background. Close examination of FimH structure and function in additional ST131 isolates revealed that recombination led to acquisition of several functionally distinct variants that, upon homologous exchange, were targeted by a variety of pathoadaptive mutations under strong positive selection. Different recombinant fimH strains also showed a strong clonal association with ST131 isolates that had distinct fluoroquinolone resistance profiles. Thus, homologous recombination of core genes plays a significant role in adaptive diversification of bacterial pathogens, especially at the level of clonally related groups of isolates.


Assuntos
Adaptação Biológica , Escherichia coli/genética , Variação Genética , Recombinação Homóloga , Adesinas de Escherichia coli/genética , Antibacterianos/farmacologia , DNA Bacteriano/química , DNA Bacteriano/genética , Farmacorresistência Bacteriana , Escherichia coli/classificação , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Proteínas de Fímbrias/genética , Fluoroquinolonas/farmacologia , Dados de Sequência Molecular , Análise de Sequência de DNA
6.
Appl Environ Microbiol ; 78(5): 1353-60, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22226951

RESUMO

Multilocus sequence typing (MLST) is usually based on the sequencing of 5 to 8 housekeeping loci in the bacterial chromosome and has provided detailed descriptions of the population structure of bacterial species important to human health. However, even strains with identical MLST profiles (known as sequence types or STs) may possess distinct genotypes, which enable different eco- or pathotypic lifestyles. Here we describe a two-locus, sequence-based typing scheme for Escherichia coli that utilizes a 489-nucleotide (nt) internal fragment of fimH (encoding the type 1 fimbrial adhesin) and the 469-nt internal fumC fragment used in standard MLST. Based on sequence typing of 191 model commensal and pathogenic isolates plus 853 freshly isolated clinical E. coli strains, this 2-locus approach-which we call CH (fumC/fimH) typing-consistently yielded more haplotypes than standard 7-locus MLST, splitting large STs into multiple clonal subgroups and often distinguishing different within-ST eco- and pathotypes. Furthermore, specific CH profiles corresponded to specific STs, or ST complexes, with 95% accuracy, allowing excellent prediction of MLST-based profiles. Thus, 2-locus CH typing provides a genotyping tool for molecular epidemiology analysis that is more economical than standard 7-locus MLST but has superior clonal discrimination power and, at the same time, corresponds closely to MLST-based clonal groupings.


Assuntos
Escherichia coli/classificação , Escherichia coli/genética , Tipagem Molecular/métodos , Adesinas de Escherichia coli/genética , Análise por Conglomerados , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Proteínas de Fímbrias/genética , Genótipo , Humanos , Epidemiologia Molecular/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA