Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37762483

RESUMO

Cotton (Gossypium spp.) is the primary source of natural textile fiber in the U.S. and a major crop in the Southeastern U.S. Despite constant efforts to increase the cotton fiber yield, the yield gain has stagnated. Therefore, we undertook a novel approach to improve the cotton fiber yield by altering its growth habit from perennial to annual. In this effort, we identified genotypes with high-expression alleles of five floral induction and meristem identity genes (FT, SOC1, FUL, LFY, and AP1) from an Upland cotton mini-core collection and crossed them in various combinations to develop cotton lines with annual growth habit, optimal flowering time, and enhanced productivity. To facilitate the characterization of genotypes with the desired combinations of stacked alleles, we identified molecular markers associated with the gene expression traits via genome-wide association analysis using a 63 K SNP Array. Over 14,500 SNPs showed polymorphism and were used for association analysis. A total of 396 markers showed associations with expression traits. Of these 396 markers, 159 were mapped to genes, 50 to untranslated regions, and 187 to random genomic regions. Biased genomic distribution of associated markers was observed where more trait-associated markers mapped to the cotton D sub-genome. Many quantitative trait loci coincided at specific genomic regions. This observation has implications as these traits could be bred together. The analysis also allowed the identification of candidate regulators of the expression patterns of these floral induction and meristem identity genes whose functions will be validated.

2.
Appl Plant Sci ; 10(6): e11503, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518948

RESUMO

Premise: The shape of young cotton (Gossypium) fibers varies within and between commercial cotton species, as revealed by previous detailed analyses of one cultivar of G. hirsutum and one of G. barbadense. Both narrow and wide fibers exist in G. hirsutum cv. Deltapine 90, which may impact the quality of our most abundant renewable textile material. More efficient cellular phenotyping methods are needed to empower future research efforts. Methods: We developed semi-automated imaging methods for young cotton fibers and a novel machine learning algorithm for the rapid detection of tapered (narrow) or hemisphere (wide) fibers in homogeneous or mixed populations. Results: The new methods were accurate for diverse accessions of G. hirsutum and G. barbadense and at least eight times more efficient than manual methods. Narrow fibers dominated in the three G. barbadense accessions analyzed, whereas the three G. hirsutum accessions showed a mixture of tapered and hemisphere fibers in varying proportions. Discussion: The use or adaptation of these improved methods will facilitate experiments with higher throughput to understand the biological factors controlling the variable shapes of young cotton fibers or other elongating single cells. This research also enables the exploration of links between early cell shape and mature cotton fiber quality in diverse field-grown cotton accessions.

3.
Plants (Basel) ; 11(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35684219

RESUMO

Researchers have used quantitative genetics to map cotton fiber quality and agronomic performance loci, but many alleles may be population or environment-specific, limiting their usefulness in a pedigree selection, inbreeding-based system. Here, we utilized genotypic and phenotypic data on a panel of 80 important historical Upland cotton (Gossypium hirsutum L.) lines to investigate the potential for genomics-based selection within a cotton breeding program's relatively closed gene pool. We performed a genome-wide association study (GWAS) to identify alleles correlated to 20 fiber quality, seed composition, and yield traits and looked for a consistent detection of GWAS hits across 14 individual field trials. We also explored the potential for genomic prediction to capture genotypic variation for these quantitative traits and tested the incorporation of GWAS hits into the prediction model. Overall, we found that genomic selection programs for fiber quality can begin immediately, and the prediction ability for most other traits is lower but commensurate with heritability. Stably detected GWAS hits can improve prediction accuracy, although a significance threshold must be carefully chosen to include a marker as a fixed effect. We place these results in the context of modern public cotton line-breeding and highlight the need for a community-based approach to amass the data and expertise necessary to launch US public-sector cotton breeders into the genomics-based selection era.

4.
Am J Physiol Lung Cell Mol Physiol ; 322(3): L479-L494, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35107034

RESUMO

Inhalational exposure to particulate matter (PM) derived from natural or anthropogenic sources alters gene expression in the airways and increases susceptibility to respiratory viral infection. Woodsmoke-derived ambient PM from wildfire events during 2020 was associated with higher COVID-19 case rates in the western United States. We hypothesized that exposure to suspensions of woodsmoke particles (WSPs) or diesel exhaust particles (DEPs) prior to SARS-CoV-2 infection would alter host immune gene expression at the transcript level. Primary human nasal epithelial cells (hNECs) from both sexes were exposed to WSPs or DEPs (22 µg/cm2) for 2 h, followed by infection with SARS-CoV-2 at a multiplicity of infection of 0.5. Forty-six genes related to SARS-CoV-2 entry and host response were assessed. Particle exposure alone minimally affected gene expression, whereas SARS-CoV-2 infection alone induced a robust transcriptional response in hNECs, upregulating type I and III interferons, interferon-stimulated genes, and chemokines by 72 h postinfection (p.i.). This upregulation was higher overall in cells from male donors. However, exposure to WSPs prior to infection dampened expression of antiviral, interferon, and chemokine mRNAs. Sex stratification of these results revealed that WSP exposure downregulated gene expression in cells from females more so than males. We next hypothesized that hNECs exposed to particles would have increased apical viral loads compared with unexposed cells. Although apical viral load was correlated to expression of host response genes, viral titer did not differ between groups. These data indicate that WSPs alter epithelial immune responses in a sex-dependent manner, potentially suppressing host defense to SARS-CoV-2 infection.

5.
bioRxiv ; 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34462747

RESUMO

We have previously shown that exposure to particulate air pollution, both from natural and anthropogenic sources, alters gene expression in the airways and increases susceptibility to respiratory viral infection. Additionally, we have shown that woodsmoke particulates (WSP) affect responses to influenza in a sex-dependent manner. In the present study, we used human nasal epithelial cells (hNECs) from both sexes to investigate how particulate exposure could modulate gene expression in the context of SARS-CoV-2 infection. We used diesel exhaust particulate (DEP) as well as WSP derived from eucalyptus or red oak wood. HNECs were exposed to particulates at a concentration of 22 µg/cm 2 for 2 h then immediately infected with SARS-CoV-2 at a MOI (multiplicity of infection) of 0.5. Exposure to particulates had no significant effects on viral load recovered from infected cells. Without particulate exposure, hNECs from both sexes displayed a robust upregulation of antiviral host response genes, though the response was greater in males. However, WSP exposure before infection dampened expression of genes related to the antiviral host response by 72 h post infection. Specifically, red oak WSP downregulated IFIT1, IFITM3, IFNB1, MX1, CCL3, CCL5, CXCL11, CXCL10 , and DDX58 , among others. After sex stratification of these results, we found that exposure to WSP prior to SARS-CoV-2 infection downregulated anti-viral gene expression in hNECs from females more so than males. These data indicate that WSP, specifically from red oak, alter virus-induced gene expression in a sex-dependent manner and potentially suppress antiviral host defense responses following SARS-CoV-2 infection.

6.
G3 (Bethesda) ; 11(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-33914887

RESUMO

Accelerated marker-assisted selection and genomic selection breeding systems require genotyping data to select the best parents for combining beneficial traits. Since 1935, the Pee Dee (PD) cotton germplasm enhancement program has developed an important genetic resource for upland cotton (Gossypium hirsutum L.), contributing alleles for improved fiber quality, agronomic performance, and genetic diversity. To date, a detailed genetic survey of the program's eight historical breeding cycles has yet to be undertaken. The objectives of this study were to evaluate genetic diversity across and within-breeding groups, examine population structure, and contextualize these findings relative to the global upland cotton gene pool. The CottonSNP63K array was used to identify 17,441 polymorphic markers in a panel of 114 diverse PD genotypes. A subset of 4597 markers was selected to decrease marker density bias. Identity-by-state pairwise distance varied substantially, ranging from 0.55 to 0.97. Pedigree-based estimates of relatedness were not very predictive of observed genetic similarities. Few rare alleles were present, with 99.1% of SNP alleles appearing within the first four breeding cycles. Population structure analysis with principal component analysis, discriminant analysis of principal components, fastSTRUCTURE, and a phylogenetic approach revealed an admixed population with moderate substructure. A small core collection (n < 20) captured 99% of the program's allelic diversity. Allele frequency analysis indicated potential selection signatures associated with stress resistance and fiber cell growth. The results of this study will steer future utilization of the program's germplasm resources and aid in combining program-specific beneficial alleles and maintaining genetic diversity.


Assuntos
Gossypium , Melhoramento Vegetal , Filogenia , Alelos , Variação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA