Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Pharmaceutics ; 15(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36839949

RESUMO

Neuronal loss is the ultimate pathophysiologic event in central nervous system (CNS) diseases and replacing these neurons is one of the most significant challenges in regenerative medicine. Providing a suitable microenvironment for new neuron engraftment, proliferation, and synapse formation is a primary goal for 3D bioprinting. Among the various biomaterials, gelatin methacrylate (GelMA) stands out due to its Arg-Gly-Asp (RGD) domains, which assure its biocompatibility and degradation under physiological conditions. This work aimed to produce different GelMA-based bioink compositions, verify their mechanical and biological properties, and evaluate their ability to support neurogenesis. We evaluated four different GelMA-based bioink compositions; however, when it came to their biological properties, incorporating extracellular matrix components, such as GeltrexTM, was essential to ensure human neuroprogenitor cell viability. Finally, GeltrexTM: 8% GelMA (1:1) bioink efficiently maintained human neuroprogenitor cell stemness and supported neuronal differentiation. Interestingly, this bioink composition provides a suitable environment for murine astrocytes to de-differentiate into neural stem cells and give rise to MAP2-positive cells.

2.
Cancers (Basel) ; 13(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34680332

RESUMO

Thyroid cancer is the most common endocrine malignancy. However, the cytological diagnosis of follicular thyroid carcinoma (FTC), Hürthle cell carcinoma (HCC), and follicular variant of papillary thyroid carcinoma (FVPTC) and their benign counterparts is a challenge for preoperative diagnosis. Nearly 20-30% of biopsied thyroid nodules are classified as having indeterminate risk of malignancy and incur costs to the health care system. Based on that, 120 patients were screened for the main driver mutations previously described in thyroid cancer. Subsequently, 14 mutation-negative cases that are the main source of diagnostic errors (FTC, HCC, or FVPTC) underwent RNA-Sequencing analysis. Somatic variants in candidate driver genes (ECD, NUP98,LRP1B, NCOR1, ATM, SOS1, and SPOP) and fusions were described. NCOR1 and SPOP variants underwent validation. Moreover, expression profiling of driver-negative samples was compared to 16 BRAF V600E, RAS, or PAX8-PPARg positive samples. Negative samples were separated in two clusters, following the expression pattern of the RAS/PAX8-PPARg or BRAF V600E positive samples. Both negative groups showed distinct BRS, ERK, and TDS scores, tumor mutation burden, signaling pathways and immune cell profile. Altogether, here we report novel gene variants and describe cancer-related pathways that might impact preoperative diagnosis and provide insights into thyroid tumor biology.

3.
Cancers (Basel) ; 13(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065786

RESUMO

Thyroid cancer incidences have been steadily increasing worldwide and are projected to become the fourth leading cancer diagnosis by 2030. Improved diagnosis and prognosis predictions for this type of cancer depend on understanding its genetic bases and disease biology. RAS mutations have been found in a wide range of thyroid tumors, from benign to aggressive thyroid carcinomas. Based on that and in vivo studies, it has been suggested that RAS cooperates with other driver mutations to induce tumorigenesis. This study aims to identify genetic alterations or pathways that cooperate with the RAS mutation in the pathogenesis of thyroid cancer. From a cohort of 120 thyroid carcinomas, 11 RAS-mutated samples were identified. The samples were subjected to RNA-Sequencing analyses. The mutation analysis in our eleven RAS-positive cases uncovered that four genes that belong to the Hippo pathway were mutated. The gene expression analysis revealed that this pathway was dysregulated in the RAS-positive samples. We additionally explored the mutational status and expression profiling of 60 RAS-positive papillary thyroid carcinomas (PTC) from The Cancer Genome Atlas (TCGA) cohort. Altogether, the mutational landscape and pathway enrichment analysis (gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of Genes and Genome (KEGG)) detected the Hippo pathway as dysregulated in RAS-positive thyroid carcinomas. Finally, we suggest a crosstalk between the Hippo and other signaling pathways, such as Wnt and BMP.

4.
Front Endocrinol (Lausanne) ; 12: 643151, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776938

RESUMO

Background: Two recurrent TERT (telomerase reverse transcriptase) promoter mutations, C228T and C250T, have been reported in thyroid carcinomas and were correlated with high-risk clinicopathological features and a worse prognosis. Although far more frequent in the poorly differentiated and undifferentiated thyroid cancer, the TERT promoter mutations play a significant role on PTC recurrence and disease-specific mortality. However, the prevalence varies considerably through studies and it is uncertain if these differences are due to population variation or the methodology used to detect TERT mutations. In this study we aim to compare three different strategies to detect TERT promoter mutations in PTC. Methods: DNA was isolated from formalin-fixed paraffin-embedded (FFPE) specimens from 89 PTC and 40 paired lymph node metastases. The prevalence of the hot spot TERT C228T and C250T mutations was assessed in FFPE samples using TaqMan SNP genotyping assays. Random samples were tested by Sanger Sequencing and droplet digital PCR (ddPCR). Results: In general, 16 out of 89 (18%) PTC samples and 14 out of 40 (35%) lymph node metastases harbored TERT promoter mutations by TaqMan assay. Sanger sequencing, performed in random selected samples, failed to detect TERT mutations in four samples that were positive by TaqMan SNP genotyping assay. Remarkably, ddPCR assay allowed detection of TERT promoter mutations in six samples that harbor very low mutant allele frequency (≤ 2%) and were negative by both genotype assay and Sanger Sequencing. Conclusion: This study observed a good concordance among the methodologies used to detect TERT promoter mutations when a high percentage of mutated alleles was present. Sanger analysis demonstrated a limit of detection for mutated alleles. Therefore, the prevalence of TERT promoter mutations in PTC may be higher than previously reported, since most studies have conventionally used Sanger sequencing. The efficient characterization of genetic alterations that are used as preoperative or postoperative diagnostic, risk stratification of the patient and individualized treatment decisions, mainly in highly heterogeneous tumors, require highly sensitive and specific approaches.


Assuntos
Mutação , Regiões Promotoras Genéticas , Análise de Sequência de DNA/métodos , Telomerase/genética , Câncer Papilífero da Tireoide/diagnóstico , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/genética , Alelos , DNA/genética , Reações Falso-Negativas , Genótipo , Humanos , Metástase Linfática , Polimorfismo de Nucleotídeo Único , Prevalência , Prognóstico , Reprodutibilidade dos Testes , Câncer Papilífero da Tireoide/epidemiologia , Neoplasias da Glândula Tireoide/epidemiologia
5.
Oncotarget ; 6(13): 11242-51, 2015 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-25803323

RESUMO

Papillary thyroid carcinoma (PTC) is the most frequent thyroid malignant neoplasia. Oncogene activation occurs in more than 70% of the cases. Indeed, about 40% of PTCs harbor mutations in BRAF gene, whereas RET rearrangements (RET/PTC oncogenes) are present in about 20% of cases. Finally, RAS mutations and TRK rearrangements account for about 5% each of these malignancies. We used RNA-Sequencing to identify fusion transcripts and mutations in cancer driver genes in a cohort of 18 PTC patients. Furthermore, we used targeted DNA sequencing to validate identified mutations. We extended the screening to 50 PTC patients and 30 healthy individuals. Using this approach we identified new missense mutations in CBL, NOTCH1, PIK3R4 and SMARCA4 genes. We found somatic mutations in DICER1, MET and VHL genes, previously found mutated in other tumors, but not described in PTC. We identified a new chimeric transcript generated by the fusion of WNK1 and B4GALNT3 genes, correlated with B4GALNT3 overexpression. Our data confirmed PTC genetic heterogeneity, revealing that gene expression correlates more with the mutation pattern than with tumor staging. Overall, this study provides new data about mutational landscape of this neoplasia, suggesting potential pharmacological adjuvant therapies against Notch signaling and chromatin remodeling enzymes.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma/genética , Fusão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação de Sentido Incorreto , N-Acetilgalactosaminiltransferases/genética , Proteínas Serina-Treonina Quinases/genética , Neoplasias da Glândula Tireoide/genética , Carcinoma/enzimologia , Carcinoma/patologia , Carcinoma Papilar , Estudos de Casos e Controles , DNA Helicases/genética , Análise Mutacional de DNA , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Antígenos de Histocompatibilidade Menor , Estadiamento de Neoplasias , Proteínas Nucleares/genética , Fenótipo , Valor Preditivo dos Testes , Proteínas Proto-Oncogênicas c-cbl/genética , Receptor Notch1/genética , Reprodutibilidade dos Testes , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/enzimologia , Neoplasias da Glândula Tireoide/patologia , Fatores de Transcrição/genética , Proteína VPS15 de Distribuição Vacuolar/genética , Proteína Quinase 1 Deficiente de Lisina WNK
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA