Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Mol Psychiatry ; 28(10): 4307-4319, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37131072

RESUMO

Current knowledge about functional connectivity in obsessive-compulsive disorder (OCD) is based on small-scale studies, limiting the generalizability of results. Moreover, the majority of studies have focused only on predefined regions or functional networks rather than connectivity throughout the entire brain. Here, we investigated differences in resting-state functional connectivity between OCD patients and healthy controls (HC) using mega-analysis of data from 1024 OCD patients and 1028 HC from 28 independent samples of the ENIGMA-OCD consortium. We assessed group differences in whole-brain functional connectivity at both the regional and network level, and investigated whether functional connectivity could serve as biomarker to identify patient status at the individual level using machine learning analysis. The mega-analyses revealed widespread abnormalities in functional connectivity in OCD, with global hypo-connectivity (Cohen's d: -0.27 to -0.13) and few hyper-connections, mainly with the thalamus (Cohen's d: 0.19 to 0.22). Most hypo-connections were located within the sensorimotor network and no fronto-striatal abnormalities were found. Overall, classification performances were poor, with area-under-the-receiver-operating-characteristic curve (AUC) scores ranging between 0.567 and 0.673, with better classification for medicated (AUC = 0.702) than unmedicated (AUC = 0.608) patients versus healthy controls. These findings provide partial support for existing pathophysiological models of OCD and highlight the important role of the sensorimotor network in OCD. However, resting-state connectivity does not so far provide an accurate biomarker for identifying patients at the individual level.


Assuntos
Conectoma , Transtorno Obsessivo-Compulsivo , Humanos , Conectoma/métodos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo , Biomarcadores , Vias Neurais
3.
Transl Psychiatry ; 12(1): 297, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882855

RESUMO

Individuals at Clinical High Risk for Psychosis (CHR-P) demonstrate heterogeneity in clinical profiles and outcome features. However, the extent of neuroanatomical heterogeneity in the CHR-P state is largely undetermined. We aimed to quantify the neuroanatomical heterogeneity in structural magnetic resonance imaging measures of cortical surface area (SA), cortical thickness (CT), subcortical volume (SV), and intracranial volume (ICV) in CHR-P individuals compared with healthy controls (HC), and in relation to subsequent transition to a first episode of psychosis. The ENIGMA CHR-P consortium applied a harmonised analysis to neuroimaging data across 29 international sites, including 1579 CHR-P individuals and 1243 HC, offering the largest pooled CHR-P neuroimaging dataset to date. Regional heterogeneity was indexed with the Variability Ratio (VR) and Coefficient of Variation (CV) ratio applied at the group level. Personalised estimates of heterogeneity of SA, CT and SV brain profiles were indexed with the novel Person-Based Similarity Index (PBSI), with two complementary applications. First, to assess the extent of within-diagnosis similarity or divergence of neuroanatomical profiles between individuals. Second, using a normative modelling approach, to assess the 'normativeness' of neuroanatomical profiles in individuals at CHR-P. CHR-P individuals demonstrated no greater regional heterogeneity after applying FDR corrections. However, PBSI scores indicated significantly greater neuroanatomical divergence in global SA, CT and SV profiles in CHR-P individuals compared with HC. Normative PBSI analysis identified 11 CHR-P individuals (0.70%) with marked deviation (>1.5 SD) in SA, 118 (7.47%) in CT and 161 (10.20%) in SV. Psychosis transition was not significantly associated with any measure of heterogeneity. Overall, our examination of neuroanatomical heterogeneity within the CHR-P state indicated greater divergence in neuroanatomical profiles at an individual level, irrespective of psychosis conversion. Further large-scale investigations are required of those who demonstrate marked deviation.


Assuntos
Transtornos Psicóticos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Imageamento por Ressonância Magnética , Transtornos Psicóticos/complicações
4.
Transl Psychiatry ; 12(1): 70, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190533

RESUMO

Larger thalamic volume has been found in children with obsessive-compulsive disorder (OCD) and children with clinical-level symptoms within the general population. Particular thalamic subregions may drive these differences. The ENIGMA-OCD working group conducted mega- and meta-analyses to study thalamic subregional volume in OCD across the lifespan. Structural T1-weighted brain magnetic resonance imaging (MRI) scans from 2649 OCD patients and 2774 healthy controls across 29 sites (50 datasets) were processed using the FreeSurfer built-in ThalamicNuclei pipeline to extract five thalamic subregions. Volume measures were harmonized for site effects using ComBat before running separate multiple linear regression models for children, adolescents, and adults to estimate volumetric group differences. All analyses were pre-registered ( https://osf.io/73dvy ) and adjusted for age, sex and intracranial volume. Unmedicated pediatric OCD patients (<12 years) had larger lateral (d = 0.46), pulvinar (d = 0.33), ventral (d = 0.35) and whole thalamus (d = 0.40) volumes at unadjusted p-values <0.05. Adolescent patients showed no volumetric differences. Adult OCD patients compared with controls had smaller volumes across all subregions (anterior, lateral, pulvinar, medial, and ventral) and smaller whole thalamic volume (d = -0.15 to -0.07) after multiple comparisons correction, mostly driven by medicated patients and associated with symptom severity. The anterior thalamus was also significantly smaller in patients after adjusting for thalamus size. Our results suggest that OCD-related thalamic volume differences are global and not driven by particular subregions and that the direction of effects are driven by both age and medication status.


Assuntos
Transtorno Obsessivo-Compulsivo , Tálamo , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Humanos , Imageamento por Ressonância Magnética , Transtorno Obsessivo-Compulsivo/tratamento farmacológico , Tálamo/diagnóstico por imagem , Tálamo/patologia
5.
NPJ Schizophr ; 7(1): 17, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649350

RESUMO

Although abnormal cortical gyrification has been consistently reported in patients with schizophrenia, whether gyrification abnormalities reflect a genetic risk for the disorder remains unknown. This study investigated differences in cortical gyrification between unaffected relatives (URs) with high genetic loading for schizophrenia and healthy controls (HCs) to identify potential genetic vulnerability markers. A total of 50 URs of schizophrenia patients and 50 matched HCs underwent T1-weighted magnetic resonance imaging to compare whole-brain gyrification using the local gyrification index (lGI). Then, the lGI clusters showing significant differences were compared between the UR subgroups based on the number of first-degree relatives with schizophrenia to identify the effect of genetic loading on cortical gyrification changes. The URs exhibited significantly lower cortical gyrification than the HCs in clusters including medial parieto-occipital and cingulate regions comprising the bilateral precuneus, cuneus, pericalcarine, lingual, isthmus cingulate, and posterior cingulate gyri. Moreover, URs who had two or more first-degree relatives with schizophrenia showed greater gyrification reductions in these clusters than those who had at least one first-degree relative with schizophrenia. Our findings of reduced gyrification in URs, which are consistent with accumulated evidence of hypogyria observed in regions showing patient-control differences in previous studies, highlight that such hypogyria in posteromedial regions may serve as a genetic vulnerability marker and reflect early neurodevelopmental abnormalities resulting from a genetic risk for schizophrenia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA