Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1170, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859344

RESUMO

Crocodilians are an order of ancient reptiles that thrive in pathogen-rich environments. The ability to inhabit these harsh environments is indicative of a resilient innate immune system. Defensins, a family of cysteine-rich cationic host defence peptides, are a major component of the innate immune systems of all plant and animal species, however crocodilian defensins are poorly characterised. We now show that the saltwater crocodile defensin CpoBD13 harbors potent antifungal activity that is mediated by a pH-dependent membrane-targeting action. CpoBD13 binds the phospholipid phosphatidic acid (PA) to form a large helical oligomeric complex, with specific histidine residues mediating PA binding. The utilisation of histidine residues for PA engagement allows CpoBD13 to exhibit differential activity at a range of environmental pH values, where CpoBD13 is optimally active in an acidic environment.


Assuntos
Jacarés e Crocodilos , Animais , Antifúngicos , Histidina , Ácidos Fosfatídicos , Defensinas , Concentração de Íons de Hidrogênio
2.
Nat Commun ; 13(1): 3387, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697699

RESUMO

COVID-19 is primarily known as a respiratory disease caused by SARS-CoV-2. However, neurological symptoms such as memory loss, sensory confusion, severe headaches, and even stroke are reported in up to 30% of cases and can persist even after the infection is over (long COVID). These neurological symptoms are thought to be produced by the virus infecting the central nervous system, however we don't understand the molecular mechanisms triggering them. The neurological effects of COVID-19 share similarities to neurodegenerative diseases in which the presence of cytotoxic aggregated amyloid protein or peptides is a common feature. Following the hypothesis that some neurological symptoms of COVID-19 may also follow an amyloid etiology we identified two peptides from the SARS-CoV-2 proteome that self-assemble into amyloid assemblies. Furthermore, these amyloids were shown to be highly toxic to neuronal cells. We suggest that cytotoxic aggregates of SARS-CoV-2 proteins may trigger neurological symptoms in COVID-19.


Assuntos
COVID-19 , COVID-19/complicações , Humanos , Peptídeos , Proteoma , RNA Viral , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda
3.
Dalton Trans ; 51(19): 7630-7643, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35510589

RESUMO

A family of eight rhenium(I) tricarbonyl complexes bearing pyridyl-imidazolylidene or bis-imidazolylidene ligands in combination with a series of N-acetyl amino acids ligands (glycine, isoleucine, and proline) and an acetate have been synthesised and characterised. These complexes are of interest as potential anticancer agents, where the oxygen bound carboxylate ligand can exchange with water giving rise to cytotoxic cationic complexes. The pseudo-first-order aquation rate constants for the complexes were evaluated using 1H NMR time-course experiments and for the complexes of the bis-imidazolylidene ligand the average k1 value was 6.22 × 10-5 s-1 while for the pyridyl-imidazolylidene ligand the aquation rate was slower with the average k1 value being 3.00 × 10-5 s-1. Cytotoxicity studies in three cancer cell lines (MDA-MB-231, PC3 and HEPG2) showed that the Re(I) complexes of the bis-imidazolylidene ligand were significantly more toxic than those of the pyridyl-imidazolylidene ligand.


Assuntos
Antineoplásicos , Rênio , Antineoplásicos/química , Antineoplásicos/farmacologia , Ligantes , Metano/análogos & derivados , Rênio/química
4.
Biomolecules ; 12(2)2022 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-35204765

RESUMO

Defensins form an integral part of the cationic host defence peptide (HDP) family, a key component of innate immunity. Apart from their antimicrobial and immunomodulatory activities, many HDPs exert multifaceted effects on tumour cells, notably direct oncolysis and/or inhibition of tumour cell migration. Therefore, HDPs have been explored as promising anticancer therapeutics. Human ß-defensin 2 (HBD-2) represents a prominent member of human HDPs, being well-characterised for its potent pathogen-killing, wound-healing, cytokine-inducing and leukocyte-chemoattracting functions. However, its anticancer effects remain largely unknown. Recently, we demonstrated that HBD-2 binds strongly to phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), a key mediator of defensin-induced cell death and an instructional messenger during cell migration. Hence, in this study, we sought to investigate the lytic and anti-migratory effects of HBD-2 on tumour cells. Using various cell biological assays and confocal microscopy, we showed that HBD-2 killed tumour cells via acute lytic cell death rather than apoptosis. In addition, our data suggested that, despite the reported PI(4,5)P2 interaction, HBD-2 does not affect cytoskeletal-dependent tumour cell migration. Together, our findings provide further insights into defensin biology and informs future defensin-based drug development.


Assuntos
Neoplasias , beta-Defensinas , Peptídeos Catiônicos Antimicrobianos/farmacologia , Movimento Celular , Humanos , Imunidade Inata , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteínas Recombinantes/farmacologia , beta-Defensinas/farmacologia
5.
Trends Pharmacol Sci ; 40(11): 866-882, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31677918

RESUMO

Pathogens and tumor cells have adopted various adept strategies to evade immunosurveillance and promote their growth and survival. There has been substantial evidence demonstrating phosphoinositide lipids and their modifying enzymes as essential host targets that are often hijacked by pathogens and tumor cells. The common dependence of pathogen virulence and tumor progression on phosphoinositides presents an exciting disease-combating potential, particularly combinatorial therapeutics. While traditional approaches to pharmacologically inhibit phosphoinositide-metabolizing enzymes has shown some promise, the direct targeting of phosphoinositides has recently emerged as a novel therapeutic strategy. Our review provides a current picture of the role of phosphoinositides during pathogen virulence and tumorigenesis as well as a thorough discussion on promises, challenges, and new perspectives of phosphoinositide-targeting drug development.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Infecções/tratamento farmacológico , Infecções/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fosfatidilinositóis/metabolismo , Animais , Anti-Infecciosos/uso terapêutico , Antineoplásicos/uso terapêutico , Ensaios Clínicos como Assunto , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Interações Hospedeiro-Patógeno , Humanos , Terapia de Alvo Molecular , Transdução de Sinais
6.
Cell Death Differ ; 26(5): 781-793, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30742090

RESUMO

Phosphorylated phosphatidylinositol lipids, or phosphoinositides, critically regulate diverse cellular processes, including signalling transduction, cytoskeletal reorganisation, membrane dynamics and cellular trafficking. However, phosphoinositides have been inadequately investigated in the context of cell death, where they are mainly regarded as signalling secondary messengers. However, recent studies have begun to highlight the importance of phosphoinositides in facilitating cell death execution. Here, we cover the latest phosphoinositide research with a particular focus on phosphoinositides in the mechanisms of cell death. This progress article also raises key questions regarding the poorly defined role of phosphoinositides, particularly during membrane-associated events in cell death such as apoptosis and secondary necrosis. The review then further discusses important future directions for the phosphoinositide field, including therapeutically targeting phosphoinositides to modulate cell death.


Assuntos
Apoptose/genética , Morte Celular/genética , Metabolismo dos Lipídeos/genética , Fosfatidilinositóis/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , Humanos , Fosfatidilinositóis/genética , Fosforilação/genética , Transporte Proteico/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA