Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 167: 113303, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35850400

RESUMO

In this research, gold-nicel supported on activated carbon (AC) nanoadsorbent (AuNi@AC) synthesized by following a series of physicochemical procedures was prepared for the removal of Maxilon Blue 5G (MB) which is a cationic textile dye. Experimental studies based on parameters specifically pH, contact time, nano catalytic adsorbent particle, initial MB dye concentration and temperature effect were conducted in aqueous solutions in a batch system. AuNi@AC nanoadsorbents (NAs) reached the equilibrium in 30 min under optimum conditions in adsorption of the dye. The pseudo-first, second-order, and intra-particle diffusion models were tested to evaluate a the experimental results. Adsorption kinetics were found to be represented by the pseudo-second-order model, and the maximum adsorption capacity (qmax.) was calculated to be 542.90 mg/g (or 2.041 mmol/g). The synthesized magnetic AuNi@AC nanoadsorbent showed a high-efficiency reusability effect of about 64% after five reuse runs. Also, thermodynamic function parameters such as activation energy (Ea), Gibbs free energy (ΔG *), and entropy (ΔS *) were investigated in the sorption study. After all evaluation of data, it was concluded that the novel AuNi@AC nanoadsorbent could be considered as an effective support material for the removal of various organic pollutants in aquation solution especially for the removal of MB.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Compostos Azo , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Azul de Metileno , Termodinâmica , Purificação da Água/métodos
2.
Environ Pollut ; 302: 119033, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217139

RESUMO

Herein, activated carbon supported modified with bimetallic-platin ruthenium nano sorbent (PtRu@AC) was synthesized by a thermal decomposition process and used in the removal of methylene blue (MB) from aqueous solutions. The synthesized nano sorbents were characterized by X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and X-ray Photoelectron Spectroscopy (XPS) spectroscopic techniques. The data obtained from characterization studies showed that PtRu@AC nano sorbent was highly crystalline and in a form of PtRu alloy with a monodispersed composition. The results indicated that the maximum adsorption capacity (qemax) for the removal of MB with PtRu@AC under optimum conditions was detected to be 1.788 mmol/g (569.4 mg/g). The experimental kinetic results of the study revealed that the adsorption of methylene blue was found to be more compatible with the false second-order model compared to some tested models. Calculations for thermodynamic functions including enthalpy change (ΔHo), entropy change (ΔSo), and Gibbs free energy change (ΔGo) values were performed to get an idea about the adsorption mechanism. As a result, the synthesized PtRu@AC nano adsorbent was detected as a highly effective adsorbent material in the removal of MB from aquatic mediums.


Assuntos
Rutênio , Poluentes Químicos da Água , Adsorção , Compostos Azo , Carvão Vegetal/química , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Ondas Ultrassônicas , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA