Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Pharm X ; 7: 100253, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38845681

RESUMO

This study aimed to present findings on a paclitaxel (PTX)-loaded polymeric micellar formulation based on polycaprolactone-vitamin E TPGS (PCL-TPGS) and evaluate its in vitro anticancer activity as well as its in vivo pharmacokinetic profile in healthy mice in comparison to a marketed formulation. Micelles were prepared by a co-solvent evaporation method. The micelle's average diameter and polydispersity were determined using dynamic light scattering (DLS) technique. Drug encapsulation efficiency was assessed using an HPLC assay. The in vitro cytotoxicity was performed on human breast cancer cells (MCF-7 and MDA-MB-231) using MTT assay. The in vivo pharmacokinetic profile was characterized following a single intravenous dose of 4 mg/kg to healthy mice. The mean diameters of the prepared micelles were ≤ 100 nm. Moreover, these micelles increased the aqueous solubility of PTX from ∼0.3 µg/mL to reach nearly 1 mg/mL. While the PTX-loaded micelles showed an in vitro cytotoxicity comparable to the marketed formulation (Ebetaxel), drug-free PCL-TPGS micelles did not show any cytotoxic effects on both types of breast cancer cells (∼100% viability). Pharmacokinetics of PTX as part of PCL-TPGS showed a significant increase in its volume of distribution compared to PTX conventional formulation, Ebetaxel, which is in line with what was reported for clinical nano formulations of PTX, i.e., Abraxane, Genexol-PM, or Apealea. The findings of our studies indicate a significant potential for PCL-TPGS micelles to act as an effective system for solubilization and delivery of PTX.

2.
Mol Pharm ; 20(11): 5359-5382, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37769017

RESUMO

Local drug delivery to the eye through conventional means has faced many challenges due to three essential barriers: (a) the complex structure of the cornea limiting drug absorption, (b) the capacity of ocular absorptive cells in drug metabolism, and (c) the washing effect of eye tears. Polymeric micelles (PMs) have been the focus of much interest for ocular drug delivery due to several advantages they provide for this application, including the capacity for the solubilization of hydrophobic drugs, nonirritability, nanoscopic diameter, and the clarity of their aqueous solution not interfering with vision. The potential to increase the release and residence time of incorporated medication at the site of absorption is also a bonus advantage for these delivery systems. This Review covers research conducted on single or mixed micelles prepared from small amphiphilic molecules, copolymers (diblock, triblock, and graft), and gel systems containing micelles. The purpose of this review is to provide an update on the status of micellar ocular delivery systems for different indications, with a focus on preclinical and clinical drug development. In this context, we are discussing the anatomy of the eye, various ocular barriers, different micellar formulations, and their benefits in ocular drug delivery, as well as the role of PMs in the management of ocular diseases both in preclinical models and in clinic. The encouraging preclinical effectiveness findings from experiments conducted in both laboratory settings and live animals have paved the way for the advancement of micellar systems in clinical trials for ocular administration and the first nanomicallar formulation approved for clinical use by the United States Food and Drug Administration (marketed as Cequa by Sun Pharmaceuticals).


Assuntos
Portadores de Fármacos , Micelas , Animais , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Polímeros/química , Córnea
3.
Saudi Pharm J ; 31(7): 1317-1326, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37323919

RESUMO

An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed for the simultaneous quantitation of doxorubicin (DOX) and sorafenib (SOR) in rat plasma. Chromatographic separation was performed using a reversed-phase column C18 (1.7 µm, 1.0 × 100 mm Acquity UPLC BEH™). The gradient mobile phase system consisted of water containing 0.1% acetic acid (mobile phase A) and methanol (mobile phase B) with a flow rate of 0.40 mL/min over 8 min. Erlotinib (ERL) was used as an internal standard (IS). The quantitation of conversion of [M + H]+, which was the protonated precursor ion, to the corresponding product ions was performed using multiple reaction monitoring (MRM) with a mass-to-charge ratio (m/z) of 544 > 397.005 for DOX, 465.05 > 252.03 for SOR, and 394 > 278 for the IS. Different parameters were used to validate the method including accuracy, precision, linearity, and stability. The developed UPLC-MS/MS method was linear over the concentration ranges of 9-2000 ng/mL and 7-2000 ng/mL with LLOQ of 9 and 7 ng/mL for DOX and SOR, respectively. The intra-day and inter-day accuracy, expressed as % relative standard deviation (RSD%), was below 10% for both DOX and SOR in all QC samples that have drug concentrations above the LLOQ. The intra-day and inter-day precision, expressed as percent relative error (Er %), was within the limit of 15.0% for all concentrations above LLOQ. Four groups of Wistar rats (250-280 g) were used to conduct the pharmacokinetic study. Group I received a single intraperitoneal (IP) injection of DOX (5 mg/kg); Group II received a single oral dose of SOR (40 mg/kg), Group III received a combination of both drugs; and Group IV received sterile water for injection IP and 0.9% w/v sodium chloride solution orally to serve as a control. Non-compartmental analysis was used to calculate the different pharmacokinetic parameters. Data revealed that coadministration of DOX and SOR altered some of the pharmacokinetic parameters of both agents and resulted in an increase in the Cmax and AUC and reduction in the apparent clearance (CL/F). In conclusion, our newly developed method is sensitive, specific, and can reliably be used to simultaneously determine DOX and SOR concentrations in rat plasma. Moreover, the results of the pharmacokinetic study suggest that coadministration of DOX and SOR might cause an increase in exposure of both drugs.

4.
Polymers (Basel) ; 14(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35566805

RESUMO

Low aqueous solubility and membrane permeability of some drugs are considered major limitations for their use in clinical practice. Polymeric micelles are one of the potential nano-drug delivery systems that were found to ameliorate the low aqueous solubility of hydrophobic drugs. The main objective of this study was to develop and characterize a novel copolymer based on poly (ethylene glycol) stearate (Myrj™)-block-poly(ε-caprolactone) (Myrj-b-PCL) and evaluate its potential as a nanosystem for ocular delivery of cyclosporine A (CyA). Myrj-b-PCL copolymer with various PCL/Myrj ratios were synthesized via ring-opening bulk polymerization of ε-caprolactone using Myrj (Myrj S40 or Myrj S100), as initiators and stannous octoate as a catalyst. The synthesized copolymers were characterized using 1H NMR, GPC, FTIR, XRD, and DSC. The co-solvent evaporation method was used to prepare CyA-loaded Myrj-b-PCL micelles. The prepared micelles were characterized for their size, polydispersity, and CMC using the dynamic light scattering (DLS) technique. The results from the spectroscopic and thermal analyses confirmed the successful synthesis of the copolymers. Transmission electron microscopy (TEM) images of the prepared micelles showed spherical shapes with diameters in the nano range (<200 nm). Ex vivo corneal permeation study showed sustained release of CyA from the developed Myrj S100-b-PCL micelles. In vivo ocular irritation study (Draize test) showed that CyA-loaded Myrj S100-b-PCL88 was well tolerated in the rabbit eye. Our results point to a great potential of Myrj S100-b-PCL as an ocular drug delivery system.

5.
Molecules ; 26(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064416

RESUMO

The objective of this study was to synthesize and characterize a set of biodegradable block copolymers based on TPGS-block-poly(ε-caprolactone) (TPGS-b-PCL) and to assess their self-assembled structures as a nanodelivery system for paclitaxel (PAX). The conjugation of PCL to TPGS was hypothesized to increase the stability and the drug solubilization characteristics of TPGS micelles. TPGS-b-PCL copolymer with various PCL/TPGS ratios were synthesized via ring opening bulk polymerization of ε-caprolactone using TPGS, with different molecular weights of PEG (1-5 kDa), as initiators and stannous octoate as a catalyst. The synthesized copolymers were characterized using 1H NMR, GPC, FTIR, XRD, and DSC. Assembly of block copolymers was achieved via the cosolvent evaporation method. The self-assembled structures were characterized for their size, polydispersity, and CMC using dynamic light scattering (DLS) technique. The results from the spectroscopic and thermal analyses confirmed the successful synthesis of the copolymers. Only copolymers that consisted of TPGS with PEG molecular weights ≥ 2000 Da were able to self-assemble and form nanocarriers of ≤200 nm in diameter. Moreover, TPGS2000-b-PCL4000, TPGS3500-b-PCL7000, and TPGS5000-b-PCL15000 micelles enhanced the aqueous solubility of PAX from 0.3 µg/mL up to 88.4 ug/mL in TPGS5000-b-PCL15000. Of the abovementioned micellar formulations, TPGS5000-b-PCL15000 showed the slowest in vitro release of PAX. Specifically, the PAX-loaded TPGS5000-b-PCL15000 micellar formulation showed less than 10% drug release within the first 12 h, and around 36% cumulative drug release within 72 h compared to 61% and 100% PAX release, respectively, from the commercially available formulation (Ebetaxel®) at the same time points. Our results point to a great potential for TPGS-b-PCL micelles to efficiently solubilize and control the release of PAX.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Paclitaxel/farmacologia , Poliésteres/química , Vitamina E/química , Varredura Diferencial de Calorimetria , Cromatografia em Gel , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Micelas , Nanopartículas/ultraestrutura , Tamanho da Partícula , Poliésteres/síntese química , Espectroscopia de Prótons por Ressonância Magnética , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Vitamina E/síntese química , Água/química , Difração de Raios X
6.
Pharm Res ; 38(1): 51-65, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33559046

RESUMO

PURPOSE: We have previously reported on a polymeric micellar formulation of Cyclosporine A (CyA) based on poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO5K-b-PCL13K) capable of changing drug biodistribution and pharmacokinetic profile following intravenous administration. The objective of the present study was to explore the potential of this formulation in changing the tissue distribution and pharmacokinetics of the encapsulated CyA following oral administration making comparisons with Sandimmune®. METHODS: The in vitro CyA release and stability CyA-loaded PEO-b-PCL micelles (CyA-micelles) were evaluated in biorelevant media. The pharmacokinetics and tissue distribution of orally administered CyA-micelles or Sandimmune® and tissue distribution of traceable Cyanine-5.5 (Cy5.5)-conjugated PEO-b-PCL micelles were then investigated in healthy rats. RESULTS: CyA-micelles showed around 60-70% CyA release in simulated intestinal and gastric fluids within 24 h, while Sandimmune® released its entire CyA content in the simulated intestinal fluid. CyA-micelles and Sandimmune® showed similar pharmacokinetics, but different tissue distribution profile in rats. In particular, the calculated AUC for CyA-micelles was higher in liver, comparable in heart, and lower in spleen, lungs, and kidneys when compared to that for Sandimmune®. CONCLUSIONS: The results point to the influence of excipients in Sandimmune® on CyA disposition and more inert nature of PEO-b-PCL micelles in defining CyA biological interactions.


Assuntos
Ciclosporina/farmacocinética , Portadores de Fármacos/química , Poliésteres/química , Administração Oral , Animais , Ciclosporina/administração & dosagem , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Excipientes/química , Masculino , Micelas , Modelos Animais , Ratos , Distribuição Tecidual
7.
Front Oncol ; 11: 772920, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004293

RESUMO

Inhibition of the DNA repair enzyme polynucleotide kinase/phosphatase (PNKP) increases the sensitivity of cancer cells to DNA damage by ionizing radiation (IR). We have developed a novel inhibitor of PNKP, i.e., A83B4C63, as a potential radio-sensitizer for the treatment of solid tumors. Systemic delivery of A83B4C63, however, may sensitize both cancer and normal cells to DNA damaging therapeutics. Preferential delivery of A83B4C63 to solid tumors by nanoparticles (NP) was proposed to reduce potential side effects of this PNKP inhibitor to normal tissue, particularly when combined with DNA damaging therapies. Here, we investigated the radio-sensitizing activity of A83B4C63 encapsulated in NPs (NP/A83) based on methoxy poly(ethylene oxide)-b-poly(α-benzyl carboxylate-ε-caprolactone) (mPEO-b-PBCL) or solubilized with the aid of Cremophor EL: Ethanol (CE/A83) in human HCT116 colorectal cancer (CRC) models. Levels of γ-H2AX were measured and the biodistribution of CE/A83 and NP/A83 administered intravenously was determined in subcutaneous HCT116 CRC xenografts. The radio-sensitization effect of A83B4C63 was measured following fractionated tumor irradiation using an image-guided Small Animal Radiation Research Platform (SARRP), with 24 h pre-administration of CE/A83 and NP/A83 to Luc+/HCT116 bearing mice. Therapeutic effects were analyzed by monitoring tumor growth and functional imaging using Positron Emission Tomography (PET) and [18F]-fluoro-3'-deoxy-3'-L:-fluorothymidine ([18F]FLT) as a radiotracer for cell proliferation. The results showed an increased persistence of DNA damage in cells treated with a combination of CE/A83 or NP/A83 and IR compared to those only exposed to IR. Significantly higher tumor growth delay in mice treated with a combination of IR and NP/A83 than those treated with IR plus CE/A83 was observed. [18F]FLT PET displayed significant functional changes for tumor proliferation for the drug-loaded NP. This observation was attributed to the higher A83B4C63 levels in the tumors for NP/A83-treated mice compared to those treated with CE/A83. Overall, the results demonstrated a potential for A83B4C63-loaded NP as a novel radio-sensitizer for the treatment of CRC.

8.
Sci Rep ; 10(1): 6675, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317681

RESUMO

The aim of this study was to assess the ability of PLGA nanoparticles (NPs) to reduce the tacrolimus (TAC)-associated nephrotoxicity following multiple dose administration. The mean diameter of prepared NPs was in the range of 227 to 263 nm with an 8.32% drug loading (w/w). Moreover, in vitro release profile of TAC-loaded NPs showed a sustained release of the drug with only less than 30% release within 12 days. Flow cytometry as well as fluorescence microscopy results confirmed the uptake of FITC-labelled PLGA NPs by dendritic cells. The ex vivo study showed that TAC-loaded NPs caused a significant suppression of the proliferation of CD4+ and CD8+ cells, which was comparable to the control formulation (Prograf). In vivo immunosuppressive activity as well as the kidney function were assessed following drug administration to mice. The animals received TAC subcutaneously at a daily dose of 1 mg/kg for 30 days delivered as the control formulation (Prograf) or TAC-loaded NPs. The results revealed significantly lower drug-associated toxicity with an activity comparable to Prograf for TAC-loaded PLGA NPs. These findings show a potential for PLGA NPs in reducing the nephrotoxicity of TAC while preserving the immunosuppressive activity.


Assuntos
Imunossupressores/efeitos adversos , Rim/patologia , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Tacrolimo/efeitos adversos , Animais , Proliferação de Células , Feminino , Rim/fisiopatologia , Testes de Função Renal , Masculino , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Linfócitos T/patologia , Tacrolimo/administração & dosagem
9.
Int J Pharm ; 569: 118573, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31356955

RESUMO

The main objective of this study was to investigate the potential of poly(α-carboxylate-co-α-benzylcarboxylate-ε-caprolactone)-block-poly(ethylene glycol)-block-poly(α-carboxylate-co-α-benzylcarboxylate-ε-caprolactone) (PCBCL-b-PEG-b-PCBCL; denoted as PolyGel™) as an in situ gel system for ocular delivery of CyA. The newly developed formulation was systematically assessed and its profile was compared to Restasis®, 0.5% CyA extemporaneous preparation, and CyA-loaded poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL) a non-gelling micelle formulation. In vivo Draize test showed that CyA-loaded PolyGel™ was well tolerated with only moderate irritation that resolved within 24 h. Both ex vivo corneal permeation and in vivo pharmacokinetics in aqueous humor (AqH) showed sustained release of CyA from PolyGel™. Non-compartmental analysis of CyA concentrations in AqH showed significant changes in pharmacokinetic parameters of CyA among different formulations. The highest Cmax and AUC0-∞ in AqH were achieved with Restasis® followed by PolyGel™. Nonetheless, CyA-loaded PolyGel™ had approximately 87% longer t1/2 for CyA compared to Restasis®. Pharmacological and histopathological studies were performed on an endotoxin-induced uveitis rabbit model, where CyA-loaded PolyGel™ showed a comparable profile to Restasis®. Our results point to a great potential of PolyGel™ as ocular drug delivery carrier.


Assuntos
Ciclosporina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Imunossupressores/administração & dosagem , Poliésteres/administração & dosagem , Uveíte/tratamento farmacológico , Administração Tópica , Animais , Humor Aquoso/metabolismo , Ciclosporina/farmacocinética , Olho/efeitos dos fármacos , Olho/metabolismo , Imunossupressores/farmacocinética , Lipopolissacarídeos , Masculino , Poliésteres/farmacocinética , Coelhos , Uveíte/induzido quimicamente
10.
Eur J Pharm Biopharm ; 142: 179-194, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31233861

RESUMO

The toxicity of nonsteroidal anti-inflammatory drugs (NSAIDs) is one of the major limitations to their long-term use in the treatment of chronic inflammatory conditions. This review provides an overview of the preclinical efforts on the development of nanodelivery systems for NSAIDs with a focus on the effect of nanoformulation on the pharmacokinetics and pharmacodynamics of the delivered drugs. Preclinical and clinical studies have shown that nanomedicine products can reduce toxicity and enhance the efficacy of certain encapsulated therapeutics. In this context, significant effort has been devoted to the development of nanodelivery systems for NSAIDs as means in reducing their side effects. Indeed, the preclinical studies on NSAID nanoformulations have been shown to reduce the toxicity while enhancing the bioavailability of incorporated NSAIDs at equal doses compared to conventional NSAID formulations. Furthermore, compared to conventional formulations, a number of nanoformulations were able to sustain the release of the loaded NSAIDs, and improve the pharmacodynamics of the encapsulated drug in preclinical models of inflammatory diseases. These advantages have been demonstrated using various routes of administration including oral, parenteral, ocular, transdermal, and others for the nanoformulations. A review of the research results implies a great potential for the use of nanotechnology in improving the quality of life for patients taking NSAIDs for chronic conditions, through reducing drug side effects or frequency of administration. The approach may also enable the administration of higher doses of NSAID needed for off-label therapeutic indications for diseases like Alzheimer's and Parkinson's.


Assuntos
Anti-Inflamatórios não Esteroides/química , Animais , Disponibilidade Biológica , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Nanomedicina/métodos , Nanotecnologia/métodos , Qualidade de Vida
11.
J Microbiol Methods ; 161: 87-95, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30738109

RESUMO

Itraconazole (ITZ) loaded Poly-(D, L-lactic-co-glycolic acid, PLGA) nanoparticles (PLGA-NPs) stabilized by D-α-Tocopherol polyethylene-glycol succinate-1000 (TPGS) were developed by nanoprecipitation and single emulsion solvent evaporation methods to improve antifungal activity of ITZ by enhancing its solubility, and hence bioavailability. Encapsulation efficiency, drug loading, in-vitro release, ex-vivo permeation and antifungal activity were performed for the optimized PLGA-NPs. Characterization of PLGA-NPs were performed by scanning electron microscopy, dynamic light scattering, differential scanning calorimetry, Fourier transform infrared spectroscopy, and powder X-ray diffractometry. We observed that nanoprecipitation method was more efficient in encapsulating ITZ by using 0.3% TPGS (stabilizer) than single emulsion solvent evaporation method. Our thermal analysis studies showed no characteristic peaks for crystalline ITZ, indicating drug efficiently encapsulated inside the nanoparticle with no compatibility issues. Drug loaded PLGA-NPs preserved the antifungal activity of ITZ against Candida albicans. Drug release profile from the NPs showed an initial burst release followed by an extended release phase suggesting the potential of NPs for sustained release applications. Furthermore, ITZ encapsulated in PLGA-NPs showed enhanced intestinal permeability in the ex-vivo study. In conclusion, the developed nano-system successfully encapsulated ITZ, yielding an increased permeation and consequential antifungal activity.


Assuntos
Antifúngicos/farmacologia , Itraconazol/farmacologia , Nanopartículas/química , Vitamina E/química , Antifúngicos/química , Candida albicans/efeitos dos fármacos , Precipitação Química , Dessecação , Liberação Controlada de Fármacos , Liofilização , Itraconazol/química , Tamanho da Partícula , Solubilidade , Vitamina E/farmacologia , Difração de Raios X
12.
J Pharm Pharm Sci ; 21(1s): 192s-199s, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30139426

RESUMO

PURPOSE: The aim of this study was to assess the pharmacokinetics of methoxy poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL) micellar formulation of cyclosporine A (CyA) following oral administration in rats making comparisons with its commercial microemulsion formulation, Neoral®. METHODS: PEO-b-PCL copolymer was synthesized and used to form micelles encapsulating CyA. The release of CyA from Neoral® and PEO-b-PCL as well as PEO-b-PCL degradation were assessed in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). Polymeric micellar CyA and Neoral® were administered by oral gavage to healthy Wistar rats. At predetermined intervals, rats (n=5 for each time point) were euthanized, samples of blood and plasma were collected and analyzed for CyA using an LC-MS/MS assay. Blood and plasma pharmacokinetic parameters of CyA in its polymeric micellar formulation were compared to those of Neoral®. RESULTS: Polymeric micelles of CyA showed < 15 and 10% increase in diameter in SGF and SIF, respectively, within 24 h. PEO-b-PCL showed signs of minimal degradation when incubated for > 8 h in SGF, but was stable in SIF. Drug release in both SGF and SIF was comparable between the two formulations except for significantly higher release of CyA in SIF only at 24 h time point from Neoral®. Following oral administration (10 mg/kg), the blood AUC0-∞ and tmax of CyA in the polymeric micellar formulation was comparable to that for Neoral®. However, the Cmax of CyA-loaded PEO-b-PCL micelles was significantly (p < 0.05) higher than that obtained with Neoral® (2.10 ± 0.41 versus 1.40 ± 0.25 µg/mL, respectively). CyA had higher blood-to-plasma concentration ratios in polymeric micelles compared to Neoral®, in vivo. CONCLUSION: Our results show that PEO-b-PCL micelles can serve as stable and good solubilizing carriers for oral delivery of CyA providing similar pharmacokinetic profile to that of Neoral®.


Assuntos
Ciclosporina/farmacocinética , Poliésteres/química , Administração Oral , Animais , Ciclosporina/administração & dosagem , Ciclosporina/química , Micelas , Estrutura Molecular , Ratos
13.
Saudi Pharm J ; 25(6): 944-953, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28951683

RESUMO

Methoxy poly(ethylene oxide)-block-poly(ɛ-caprolactone) (PEO-b-PCL) copolymers are amphiphilic and biodegradable copolymers designed to deliver a variety of drugs and diagnostic agents. The aim of this study was to synthesize PEO-b-PCL block copolymers and assess the toxic effects of drug-free PEO-b-PCL micelles after multiple-dose administrations via oral or intraperitoneal (ip) administration in rats. Assembly of block copolymers was achieved by co-solvent evaporation method. To investigate the toxicity profile of PEO-b-PCL micelles, sixty animals were divided into two major groups: The first group received PEO-b-PCL micelles (100 mg/kg) by oral gavage daily for seven days, while the other group received the same dose of micelles by ip injections daily for seven days. Twenty-four hours following the last dose, half of the animals from each group were sacrificed and blood and organs (lung, liver, kidneys, heart and spleen) were collected. Remaining animals were observed for further 14 days and was sacrificed at the end of the third week, and blood and organs were collected. None of the polymeric micelles administered caused any significant effects on relative organ weight, animal body weight, leucocytes count, % lymphocytes, liver and kidney toxicity markers and organs histology. Although the dose of copolymers used in this study is much higher than those used for drug delivery, it did not cause any significant toxic effects in rats. Histological examination of all the organs confirmed the nontoxic nature of the micelles.

14.
Drug Res (Stuttg) ; 67(10): 591-595, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28628923

RESUMO

Cremophor EL is a nonionic surfactant widely used in pharmaceutical formulations. Nonetheless, there are several reports on the influence of this excipient on the protein binding, pharmacokinetics, and pharmacodynamics of drugs. Valspodar is an investigational non-immunosuppressive derivative of cyclosporine A, used in clinical trials for treatment of multidrug resistant tumors. The formulation of valspodar (Amdray®) contains cremophor EL and ethanol as solubilizing agents. The main aim of the current study was to assess the plasma protein binding (in vitro) and the pharmacokinetic profile of valspodar in the cremophor EL-based formulation in comparison to a cremophor EL-free formulation following intravenous (i. v.) administration to rats. Valspodar dissolved in PEG 400/ethanol (diluted in Dextrose 5%) was used as the cremophor EL-free formulation. The in vitro plasma unbound fraction (f u) of valspodar in the cremophor EL formulation was 2.3-fold higher than the PEG 400/ethanol formulation. Following a single i. v. dose of 5 mg/kg, valspodar in the cremophor EL-based formulation had around 50% lower plasma AUC compared to the PEG 400/ethanol formulation. Moreover, the cremophor EL formulation had significantly higher volume of distribution and clearance in comparison to the PEG 400-based formulation. The results highlight the significance of excipient-drug interaction that should not be overlooked during the early stages of drug development.


Assuntos
Ciclosporina/farmacologia , Ciclosporina/farmacocinética , Ciclosporinas/farmacocinética , Excipientes/química , Polietilenoglicóis/química , Animais , Glicerol/análogos & derivados , Plasma , Ligação Proteica , Ratos
15.
Saudi Pharm J ; 25(2): 258-265, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28344477

RESUMO

Tacrolimus is a potent immunosuppressant; however, it suffers from several problems such as poor water solubility (4-12 µg/mL), low and variable oral bioavailability in patients, and narrow therapeutic window that could not be solved by the currently available i.v. formulation (Prograf®). Moreover, Prograf® contains HCO-60 (PEGylated castor oil) as a surfactant, which is reported to cause several side effects including hypersensitivity reactions. Therefore, the aim of the present study was to investigate the potential of PEO-b-PCL polymeric micelles as alternative vehicles for the solubilization and delivery of tacrolimus. Four PEO-b-PCL block copolymers, with different molecular weights of PCL, were synthesized by ring opening polymerization of ε-caprolactone using methoxy polyethylene oxide (5,000 g mol-1) as initiator and stannous octoate as catalyst. Synthesized copolymers were characterized for their average molecular weights and polydispersity index by 1H NMR and gel permeation chromatography (GPC), respectively. Drug-free micelles of PEO-b-PCL were prepared through a co-solvent evaporation method using acetone as the organic co-solvent. Tacrolimus-loaded micelles were prepared using the same method with different initial amounts of drug. Prepared micelles were characterized for their mean diameter size and polydispersity of the micellar population by dynamic light scattering, and an HPLC assay was used to determine the encapsulation efficiency of tacrolimus. The average molecular weights of the synthesized copolymers were in the range of 8,400-28,000 with narrow distributions (PDI = 1.06-1.11). The copolymers were designated according to the degree of polymerization of ε-caprolactone, namely PEO114-b-PCL30, PEO114-b-PCL60, PEO114-b-PCL120, and PEO114-b-PCL200. All the prepared micelles were having diameters sizes less than 100 nm with narrow distributions. The highest drug solubilization was achieved with PEO114-b-PCL120, where the aqueous solubility of tacrolimus exceeded 300 µg/mL. Our results show a potential for PEO-b-PCL micelles as solubilizing vehicles for the delivery of tacrolimus.

16.
AAPS PharmSciTech ; 17(4): 978-87, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26729529

RESUMO

In this study, we investigated whether tacrolimus extracted and purified from the commercial capsules (Prograf® 5 mg) have retained its original quality and activity beyond the capsules expiration date in order to be reused for research purposes after extraction. High-performance liquid chromatography (HPLC) assay method was developed and validated for the quantification of tacrolimus, using cyclosporine A as an internal standard (IS). Moreover, a combination of analytical methods, including nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), Fourier transform-infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and differential scanning calorimetry (DSC) were used to assess the quality of extracted/purified tacrolimus. Suppression of murine peripheral-blood mononuclear cells (PBMC) proliferation and the levels of interleukin-2 (IL-2) and interferon gamma (IFN-γ) were also assessed. The data obtained showed no detectable differences in the quality profile between the authentic sample and extracted drug. Also, the results showed that the extracted/purified tacrolimus was able to suppress T cell proliferation, induced by concanavalin A, indicating the retained pharmacological activity. We proved that tacrolimus extracted/purified from expired Prograf® capsuled retains its purity and immunosuppressive activity and can be reused for research and possibly in pharmaceutical manufacturing.


Assuntos
Cápsulas/química , Cápsulas/farmacologia , Tacrolimo/química , Tacrolimo/farmacologia , Animais , Cromatografia Líquida de Alta Pressão/métodos , Ciclosporina/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Imunossupressores/química , Imunossupressores/farmacologia , Interferon gama/metabolismo , Interleucina-2/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos
17.
Curr Cancer Drug Targets ; 13(3): 326-46, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23369096

RESUMO

One of the major causes of failure in cancer chemotherapy is multidrug resistance (MDR), where cancer cells simultaneously become resistant to different anticancer drugs. Over-expression of membrane efflux pumps like P-glycoprotein (P-gp) that recognizes different chemotherapeutic agents and transports them out of the cell, plays a major role in MDR. The shortcoming of P-gp inhibitors in clinic has been attributed to their non-specific action on P-gp and/or non-selective distribution to non-target organs that leads to intolerable side effects by the P-gp inhibitor at doses required for P-gp inhibition upon systemic administration. Another major issue is the reduced elimination of P-gp substrates (e.g. anticancer drugs) and intolerable toxicities by anticancer drugs when co-administered with P-gp inhibitors. To overcome these shortcomings, new generation of P-gp inhibitors with improved specificity for P-gp have been developed. More recently, attention has been paid to the use of drug delivery systems primarily to restrict P-gp inhibition to tumor and reduce the non-selective inhibition of P-gp in non-target organs. This review will provide an overview and update on the status of P-gp inhibition approaches and the role of drug delivery systems in overcoming P-gp mediated MDR.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Pesquisa Biomédica/tendências , Ensaios Clínicos como Assunto , Sistemas de Liberação de Medicamentos/efeitos adversos , Drogas em Investigação/administração & dosagem , Drogas em Investigação/efeitos adversos , Drogas em Investigação/farmacologia , Drogas em Investigação/uso terapêutico , Inativação Gênica , Humanos , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia
18.
Ther Deliv ; 3(9): 1117-30, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23035595

RESUMO

Although local colonic delivery is achievable through several strategies, colon cancer is still considered one of the leading causes of death worldwide. Failure of chemotherapeutics to exhibit efficient anticancer activity might be attributed to the development of multidrug resistance (MDR) mechanisms including the overexpression of certain oncogenes such as MDRI/P-gp. One of the major reasons for the shortcoming of P-gp inhibitors in clinic is the nonspecific distribution of them to nontarget organs, which leads to reduced elimination and increased toxicity of its substrates including anticancer agents. Numerous studies have demonstrated the effectiveness ofgene-silencing approaches in reversing the P-gp-mediated MDR. However, none have reached clinical trials yet. Several drug-delivery systems have been investigated primarily to address P-gp and the observed improved anticancer efficacy suggests that nanomedicine provides new opportunities to overcome MDR in cancer. In this review, novel therapeutic strategies for colon cancer therapy will be discussed in the context of P-gp inhibition by low-molecular-weight agents and RNAi molecules.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Neoplasias do Colo/terapia , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Neoplasias do Colo/genética , Técnicas de Transferência de Genes , Humanos , Nanopartículas
19.
Acta Biomater ; 8(6): 2017-33, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22406912

RESUMO

Self-assembly of amphiphilic block co-polymers composed of poly(ethylene oxide) (PEO) as the hydrophilic block and poly(ether)s, poly(amino acid)s, poly(ester)s and polypropyleneoxide (PPO) as the hydrophobic block can lead to the formation of nanoscopic structures of different morphologies. These structures have been the subject of extensive research in the past decade as artificial mimics of lipoproteins and viral vectors for drug and gene delivery. The aim of this review is to provide an overview of the synthesis of commonly used amphiphilic block co-polymers. It will also briefly go over some pharmaceutical applications of amphiphilic block co-polymers as "nanodelivery systems" for small molecules and gene therapeutics.


Assuntos
Sistemas de Liberação de Medicamentos , Técnicas de Transferência de Genes , Nanotecnologia , Concentração de Íons de Hidrogênio , Micelas
20.
Eur J Pharm Biopharm ; 81(1): 142-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22361031

RESUMO

Co-administration of P-glycoprotein (P-gp) inhibitors such as cyclosporine A (CyA) and its analogue valspodar with doxorubicin (DOX) can result in diminished clearance of DOX, leading to accentuated toxicity. The purpose of this study was to evaluate whether the effect of these P-gp inhibitors on the pharmacokinetics of DOX can be avoided through their encapsulation in polymeric micelles. Cyclosporine A or valspodar was physically encapsulated in methoxypoly(ethylene oxide)-b-poly(ε-caprolactone) (PEO-b-PCL) micelles using co-solvent evaporation method. The commercially available DOX was administered as a single dose of 5mg/kg intravenously to Sprague-Dawley rats either alone or 30min following a single intravenous dose (10mg/kg) of either CyA or valspodar as part of conventional or polymeric micellar formulation. Co-administration of DOX with either Sandimmune® or valspodar in the conventional Cremophor EL-based formulation was associated with greater than 50% reduction in DOX clearance (CL). Although there was nearly 40% reduction in the CL of DOX with the polymeric micellar formulation of CyA, there was only 6% reduction in CL of DOX upon co-administration with the polymeric micellar formulation of valspodar. In conclusion, encapsulation of cyclosporines, particularly valspodar, in polymeric micelles was shown to reduce their effects on the pharmacokinetics of DOX in rat.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Ciclosporina/administração & dosagem , Ciclosporinas/administração & dosagem , Doxorrubicina/farmacocinética , Animais , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/toxicidade , Ciclosporina/farmacologia , Ciclosporinas/farmacologia , Doxorrubicina/toxicidade , Interações Medicamentosas , Injeções Intravenosas , Lactonas/química , Masculino , Micelas , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA