Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(3): e14428, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36967975

RESUMO

Fiber-reinforced polymer (FRP) composites play a vital role in the production of structural and semi-structural components for engineering applications. The drilling process is a commonly employed machining process for FRP composites to join the FRP structural elements. Usually, the FRP composites possess a heterogeneous nature because of their multi-layered structure, hybridization, and the presence of multi-phase materials. Hence, common problems like delaminations, fuzzing, buckling, cracking, matrix and fiber burning occur during the drilling operations. These problems cause dimensional inaccuracy, poor surface finish, and tool wear and reduce the mechanical strength of the composites. The optimum drilling parameters (drill geometry, speed, feed, and depth of cut) selection for the specific materials is good to achieve effective drilling performance and better surface quality of the holes. Yet, little study has been done on how all of these factors affect the size of the drilled hole. The majority of drilling studies on FRPCs in the past have focused on how to improve the hole quality by maximizing processing conditions, and there has been little discussion on the correlation between drilling conditions, physical properties, and production techniques. This is what motivated to review the characteristics and properties analysis of FRP composites. As a consequence of this research, it is anticipated that scientists and researchers would place a greater emphasis on the drilling characteristic of the workpieces made from FRPCs than on other attributes. This review clearly presents an overview of FRP composites drilling that had progressed from 2000 to 2021. The analysis of different drilling conditions and parameters like thrust force, drill geometry, temperature, speed, and feed also includes the post-drilling analysis through delaminations, thermal damage, and surface roughness. Furthermore, the recent developments in carbon, glass, and natural fiber reinforced polymer composites are studied with both conventional and nonconventional drilling techniques. Based on the above studies, some future challenges and conclusions are drawn from this review.

2.
Int J Biol Macromol ; 235: 123705, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36801305

RESUMO

Agricultural waste is considered a promising source for bacterial cellulose production. This study aims to observe the influence of TiO2 nanoparticles and graphene on the characteristic of bacterial cellulose acetate-based nanocomposite membranes for bacterial filtration in waters. Bacterial cellulose was produced from the pineapple peel waste using fermentation process. High-pressure homogenization process was applied to reduce bacterial nanocellulose size and esterification process was carried out to produce cellulose acetate. Nanocomposite membranes were synthesized with reinforcement of TiO2 nanoparticles 1 % and graphene nanopowder 1 %. The nanocomposite membrane was characterized using an FTIR, SEM, XRD, BET, tensile testing, and bacterial filtration effectiveness using the plate count method. The results showed that the main cellulose structure was identified at the diffraction angle 22° and the cellulose structure slightly changed at the peak of diffraction angles of 14° and 16°. In addition, the crystallinity of bacterial cellulose increased from 72.5 % to 75.9 %, and the functional group analysis showed that several peak shifts indicated a change in the functional group of membrane. Similarly, the surface morphology of membrane became rougher with the structure of mesoporous membrane. Moreover, adding TiO2 and graphene increases crystallinity and bacterial filtration effectiveness of nanocomposite membrane.


Assuntos
Grafite , Nanocompostos , Nanopartículas , Grafite/química , Celulose/química , Nanocompostos/química , Nanopartículas/química , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA