Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 10(4)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35456839

RESUMO

The current work reports the biosynthesis of silver nanoparticles (AgNPs) using the antimicrobial activities of ethyl acetate extract of Urtica diocia (UD) leaves as a reducing and capping agent. The synthesized UD-AgNPs were characterized using UV−visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDAX), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and dynamic light scattering (DLS). The UD-AgNPs were evaluated against Gram-positive and Gram-negative bacteria, and their size, shape, and distribution were recorded. The average size of an NP was 19.401 nm. The zone of inhibition (ZOI) for 75 µL of UD-AgNPs against Pseudomonas aeruginosa (P. aeruginosa) was 21 ± 0.4 mm more than that of the control drug Ciprofloxacin (16 ± 10 mm). The minimum inhibitory concentration (MIC) was the lowest against Escherichia coli (E. coli) (36 ± 3 µg/mL) and Staphylococcusepidermidis (S. epidermidis) (38 ± 3 µg/mL). Moreover, the minimum bactericidal concentration (MBC) was the lowest against E.coli (75 ± 00 µg/mL) and Enterococcus faecalis (E. faecalis (83 ± 16 µg/mL). Thus, the UD-AgNPs synthesized using the ethyl acetate extract of UD can be used as a new antimicrobial drug.

2.
J Infect Public Health ; 14(12): 1848-1853, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34794907

RESUMO

BACKGROUND: The increasing azole drug resistance in fungal pathogens poses a pressing threat to global health care. The coexistence of drug-resistant Candida albicans with tuberculosis patients and the failure of several drugs to treat C. albicans infection extend hospital stay, economic burden, and death. The misuse or abuse of azole-derived antifungals, chronic use of TB drugs, different immune-suppressive drugs, and diseases like HIV, COVID-19, etc., have aggravated the situation. So it is vital to understand the molecular changes in drug-resistant genes to modify the treatment to design an alternative mechanism. METHOD: C. albicans isolated from chronic tuberculosis patients were screened for antifungal sensitivity studies using disk diffusion assay. The multidrug-resistant C. albicans were further screened for molecular-level changes in drug resistance using MDR1 gene sequencing and compared with Gen bank data of similar species using the BLAST tool. RESULTS: The investigation proved that the isolated C. albicans from TB patients are significantly resistant to the action of six drugs. The molecular changes in MDR1 genes showed differences in seven nucleotide base pairs that interfered with the efflux pump.


Assuntos
COVID-19 , Candida albicans , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Antifúngicos/farmacologia , Candida albicans/genética , Resistência a Medicamentos , Humanos , Testes de Sensibilidade Microbiana , SARS-CoV-2
3.
J Appl Biomater Funct Mater ; 19: 2280800020987405, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33541198

RESUMO

Regeneration and reconstruction of segmental bone defects (SBD) is a clinical challenge in maxillofacial surgery and orthopedics. The present study evaluated efficacy of guided bone-regeneration (GBR) of rat femoral SBD using osteoconductive equine-bone (EB) and beta-tricalcium phosphate (beta-TCP) grafts, either with or without platelet-derived growth-factor (PDGF). Following ethical-approval, 50 male Wistar-Albino rats (aged ~12-15 months and weighing ~450-500 g) were included. A 5 mm femoral critical-size SBD was created and animals were divided into five groups depending on the graft material used for GBR (EB, EB + PDGF, Autograft, beta-TCP, beta-TCP + PDGF; n = 10/group). Following 12-weeks of healing, animals were sacrificed and femur specimens were analyzed through qualitative histology and quantitative histomorphometry. There was new bone bridging femoral SBD in all groups and qualitatively, better bone formation was seen in autograft and EB + PDGF groups. Histomorphometric bone-area (BA %) was significantly high in autograft group, followed by EB + PDGF, beta-TCP + PDGF, EB, and beta-TCP groups. Addition of PDGF to EB and beta-TCP during GBR resulted in significantly higher BA%. After 12-weeks of healing, EB + PDGF for GBR of rat femoral segmental defects resulted in new bone formation similar to that of autograft. Based on this study, GBR with EB and adjunct PDGF could be a potential clinical alternative for reconstruction and regeneration of segmental bone defects.


Assuntos
Substitutos Ósseos , Fator de Crescimento Derivado de Plaquetas , Animais , Regeneração Óssea , Fosfatos de Cálcio/farmacologia , Cavalos , Masculino , Osteogênese , Fator de Crescimento Derivado de Plaquetas/farmacologia , Ratos , Ratos Wistar , Engenharia Tecidual
4.
J Invest Surg ; 32(5): 456-466, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29504816

RESUMO

Background and objectives: Guided bone regeneration (GBR) is commonly used for osseous defect reconstruction. The objective of this study was to evaluate in real-time (in-vivo) the efficacy of equine bone graft for GBR in segmental critical-size defects (CSD) of the femur in a rat model. Materials and methods: Following ethical approval, 30 male Wistar-Albino rats (age 12-14 months/weight 450-500 grams) were included. Under general-anesthesia, a mid-diaphyseal segmental CSD (5 mm) was created in the femur and stabilized using titanium Miniplate(4 holes,1.0 mm thickness). Depending upon material used for GBR, animals were randomly divided into three groups(n = 10/per group). Negative control-Defect covered with resorbable collagen membrane(RCM); Positive control-Defect filled with autologous bone and covered by RCM; Equine bone-Defect filled with equine bone and covered by RCM. Real-time in-vivo Micro-CT was performed at baseline, 2, 4, 6 and 8 weeks to determine volume and mineral density of newly formed bone (NFB) and remaining bone graft particles (BGP). Results: In-vivo micro-CT revealed increase in volume and mineral density of NFB within defects from baseline to 8-weeks in all groups. At 8-weeks NFB-volume in the equine bone group(53.24 ± 13.83 mm3; p < 0.01) was significantly higher than the negative control(5.6 ± 1.06 mm3) and positive control(26.07 ± 5.44 mm3) groups. Similarly, NFB-mineral density in the equine bone group(3.33 ± 0.48 g/mm3; p < 0.01) was higher than the other (negative control-0.27 ± 0.02 g/mm3; positive control-2.55 ± 0.6 g/mm3). A gradual decrease in the BGP-volume and BGP-mineral density was observed. Conclusion: The use of equine bone for GBR in femoral segmental defects in rats, results in predictable new bone formation as early as 2-weeks after bone graft placement.


Assuntos
Regeneração Óssea , Transplante Ósseo/métodos , Fêmur/transplante , Animais , Densidade Óssea , Modelos Animais de Doenças , Fêmur/diagnóstico por imagem , Fêmur/lesões , Cavalos , Humanos , Masculino , Ratos , Ratos Wistar , Transplante Heterólogo/métodos , Resultado do Tratamento , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA