RESUMO
The G haplotype is a group of co-inherited single nucleotide variants in the F5 gene that reduce venous thromboembolism (VTE) risk. Even though seven percent of the population is homozygous for the G haplotype (F5-G/G), the underlying mechanism of VTE protection is poorly understood. Using RNA-seq data from 4,651 blood donors in the INTERVAL study we detected a rare excision event at the FV-short splice sites in 5% of F5-G/Gs as compared with 2.16% of homozygotes for the F5 reference sequence (F5-ref) (p=0.003). Highly elevated (~10-fold) FV-short, an FV isoform lacking most of the B-domain, has been linked with increased tissue factor inhibitor alpha (TFPIα) levels in rare hemorrhagic diathesis including East Texas Bleeding Disorder. To ascertain whether the enhanced FV-short splicing seen in F5-G/G INTERVAL participants translated to increased plasma FV-short levels we analyzed plasma samples from 7 F5-G/G and 13 F5-ref individuals in a recall-by-genotype study. A ~2.2-fold higher amount of FV-short was found in a plasma pool from F5-G/G participants as compared with F5-refs (p=0.029), but no difference in total FV levels. Whilst no significant difference in TFPI levels were found, F5-G/Gs showed a ~1.4-fold TFPI-dependent increase in lag time to thrombin generation compared to F5-refs (p=0.0085). Finally, in an analysis of 117,699 UK Biobank participants we discovered that, while being protective against VTE, the G haplotype also confers an increase in bleeding episodes (p=0.011). Our study provides evidence that the effect of the common G haplotype is mediated by the FV-short/TFPI pathway.
RESUMO
Background: Adherence to inflammatory bowel disease (IBD) medication is crucial to maintain remission, especially during pregnancy. Objective: To examine the influence of family planning and pregnancy-related patient knowledge regarding IBD and pregnancy on adherence. Design: Cross-sectional survey study. Methods: We surveyed female patients with IBD aged 18-35 years, who at recruitment to the UK IBD BioResource had not had children. We elicited disease and treatment history, demographics and family planning status via an online questionnaire. Patient knowledge as assessed by the validated Crohn's and Colitis Pregnancy Knowledge Score (CCPKnow) and adherence by visual analogue scale (VAS). Results: In 326 responders (13.8% response rate), good adherence (VAS ⩾ 80) was found in only 38.35%. Disease- and treatment-related factors were not significantly associated with good adherence, except for methotrexate (70.0% adherent of 10 exposed patients versus 37.2% non-exposed; p = 0.036). Patients planning pregnancy for the next year were more often adherent (59.0% versus 35.5%; p = 0.019) and knowledgeable (median CCPKnow 8 versus 7; p = 0.035) compared to those in other family planning categories. Pregnancy-related patient knowledge was significantly associated with adherence (Pearson correlation 0.141; p = 0.015). Adherent patients had significantly higher CCPKnow scores than non-adherent patients (median 8 versus 6; p = 0.009). On binary regression analysis, only planning to conceive within 12 months was independently associated with better adherence (p = 0.016), but not methotrexate exposure (p = 0.076) and CCPKnow (p = 0.056). Conclusions: In a cohort of women of childbearing age with IBD overall medication, adherence was low. Planning to conceive within the next year was associated with better adherence and greater patient knowledge.
RESUMO
BACKGROUND: Variants in genes encoding nuclear pore complex (NPC) proteins are a newly identified cause of paediatric steroid-resistant nephrotic syndrome (SRNS). Recent reports describing NUP93 variants suggest these could be a significant cause of paediatric onset SRNS. We report NUP93 cases in the UK and demonstrate in vivo functional effects of Nup93 depletion in a fly (Drosophila melanogaster) nephrocyte model. METHODS: Three hundred thirty-seven paediatric SRNS patients from the National cohort of patients with Nephrotic Syndrome (NephroS) were whole exome and/or whole genome sequenced. Patients were screened for over 70 genes known to be associated with Nephrotic Syndrome (NS). D. melanogaster Nup93 knockdown was achieved by RNA interference using nephrocyte-restricted drivers. RESULTS: Six novel homozygous and compound heterozygous NUP93 variants were detected in 3 sporadic and 2 familial paediatric onset SRNS characterised histologically by focal segmental glomerulosclerosis (FSGS) and progressing to kidney failure by 12 months from clinical diagnosis. Silencing of the two orthologs of human NUP93 expressed in D. melanogaster, Nup93-1, and Nup93-2 resulted in significant signal reduction of up to 82% in adult pericardial nephrocytes with concomitant disruption of NPC protein expression. Additionally, nephrocyte morphology was highly abnormal in Nup93-1 and Nup93-2 silenced flies surviving to adulthood. CONCLUSION: We expand the spectrum of NUP93 variants detected in paediatric onset SRNS and demonstrate its incidence within a national cohort. Silencing of either D. melanogaster Nup93 ortholog caused a severe nephrocyte phenotype, signaling an important role for the nucleoporin complex in podocyte biology. A higher resolution version of the Graphical abstract is available as Supplementary information.
Assuntos
Drosophila melanogaster , Síndrome Nefrótica , Complexo de Proteínas Formadoras de Poros Nucleares , Podócitos , Adulto , Animais , Criança , Modelos Animais de Doenças , Drosophila melanogaster/genética , Resistência a Medicamentos/genética , Glucocorticoides/efeitos adversos , Glucocorticoides/uso terapêutico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/genética , Síndrome Nefrótica/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Podócitos/metabolismoRESUMO
We have identified a rare missense variant on chromosome 9, position 125145990 (GRCh37), in exon 8 in PTGS1 (the gene encoding cyclo-oxygenase 1, COX-1, the target of anti-thrombotic aspirin therapy). We report that in the homozygous state within a large consanguineous family this variant is associated with a bleeding phenotype and alterations in platelet reactivity and eicosanoid production. Western blotting and confocal imaging demonstrated that COX-1 was absent in the platelets of three family members homozygous for the PTGS1 variant but present in their leukocytes. Platelet reactivity, as assessed by aggregometry, lumi-aggregometry and flow cytometry, was impaired in homozygous family members, as were platelet adhesion and spreading. The productions of COX-derived eicosanoids by stimulated platelets were greatly reduced but there were no changes in the levels of urinary metabolites of COX-derived eicosanoids. The proband exhibited additional defects in platelet aggregation and spreading which may explain why her bleeding phenotype was slightly more severe than those of other homozygous affected relatives. This is the first demonstration in humans of the specific loss of platelet COX-1 activity and provides insight into its consequences for platelet function and eicosanoid metabolism. Notably despite the absence of thromboxane A2 (TXA2) formation by platelets, urinary TXA2 metabolites were in the normal range indicating these cannot be assumed as markers of in vivo platelet function. Results from this study are important benchmarks for the effects of aspirin upon platelet COX-1, platelet function and eicosanoid production as they define selective platelet COX-1 ablation within humans.
Assuntos
Aspirina , Testes de Função Plaquetária , Plaquetas , Ciclo-Oxigenase 1/genética , Feminino , Humanos , Agregação Plaquetária/genética , Tromboxano A2RESUMO
The heterogeneous manifestations of MYH9-related disorder (MYH9-RD), characterized by macrothrombocytopenia, Döhle-like inclusion bodies in leukocytes, bleeding of variable severity with, in some cases, ear, eye, kidney, and liver involvement, make the diagnosis for these patients still challenging in clinical practice. We collected phenotypic data and analyzed the genetic variants in more than 3,000 patients with a bleeding or platelet disorder. Patients were enrolled in the BRIDGE-BPD and ThromboGenomics Projects and their samples processed by high throughput sequencing (HTS). We identified 50 patients with a rare variant in MYH9. All patients had macrothrombocytes and all except two had thrombocytopenia. Some degree of bleeding diathesis was reported in 41 of the 50 patients. Eleven patients presented hearing impairment, three renal failure and two elevated liver enzymes. Among the 28 rare variants identified in MYH9, 12 were novel. HTS was instrumental in diagnosing 23 patients (46%). Our results confirm the clinical heterogeneity of MYH9-RD and show that, in the presence of an unclassified platelet disorder with macrothrombocytes, MYH9-RD should always be considered. A HTS-based strategy is a reliable method to reach a conclusive diagnosis of MYH9-RD in clinical practice.
Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Cadeias Pesadas de Miosina/genética , Adolescente , Adulto , Idoso , Alelos , Criança , Pré-Escolar , Mapeamento Cromossômico , Evolução Molecular , Feminino , Imunofluorescência , Expressão Gênica , Estudos de Associação Genética/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação , Cadeias Pesadas de Miosina/metabolismo , Fenótipo , Adulto JovemRESUMO
BACKGROUND: Brain monoamine vesicular transport disease is an infantile onset neurodevelopmental disorder caused by variants in SLC18A2, which codes for the vesicular monoamine transporter 2 (VMAT2) protein, involved in the transport of monoamines into synaptic vesicles and of serotonin into platelet dense granules. CASE PRESENTATION: The presented case is of a child, born of healthy consanguineous parents, who exhibited hypotonia, mental disability, epilepsy, uncontrolled movements, and gastrointestinal problems. A trial treatment with L-DOPA proved unsuccessful and the exact neurological involvement could not be discerned due to normal metabolic and brain magnetic resonance imaging results.Platelet studies and whole genome sequencing were performed. At age 4, the child's platelets showed a mild aggregation and adenosine triphosphate secretion defect that could be explained by dysmorphic dense granules observed by electron microscopy. Interestingly, the dense granules were almost completely depleted of serotonin. A novel homozygous p.P316A missense variant in VMAT2 was detected in the patient and the consanguineous parents were found to be heterozygous for this variant. Although the presence of VMAT2 on platelet dense granules has been demonstrated before, this is the first report of defective platelet dense granule function related to absent serotonin storage in a patient with VMAT2 deficiency but without obvious clinical bleeding problems. CONCLUSIONS: This study illustrates the homology between serotonin metabolism in brain and platelets, suggesting that these blood cells can be model cells for some pathways relevant for neurological diseases. The literature on VMAT2 deficiency is reviewed.
RESUMO
Sphingolipids are fundamental to membrane trafficking, apoptosis, and cell differentiation and proliferation. KDSR or 3-keto-dihydrosphingosine reductase is an essential enzyme for de novo sphingolipid synthesis, and pathogenic mutations in KDSR result in the severe skin disorder erythrokeratodermia variabilis et progressiva-4 Four of the eight reported cases also had thrombocytopenia but the underlying mechanism has remained unexplored. Here we expand upon the phenotypic spectrum of KDSR deficiency with studies in two siblings with novel compound heterozygous variants associated with thrombocytopenia, anemia, and minimal skin involvement. We report a novel phenotype of progressive juvenile myelofibrosis in the propositus, with spontaneous recovery of anemia and thrombocytopenia in the first decade of life. Examination of bone marrow biopsies showed megakaryocyte hyperproliferation and dysplasia. Megakaryocytes obtained by culture of CD34+ stem cells confirmed hyperproliferation and showed reduced proplatelet formation. The effect of KDSR insufficiency on the sphingolipid profile was unknown, and was explored in vivo and in vitro by a broad metabolomics screen that indicated activation of an in vivo compensatory pathway that leads to normalization of downstream metabolites such as ceramide. Differentiation of propositus-derived induced pluripotent stem cells to megakaryocytes followed by expression of functional KDSR showed correction of the aberrant cellular and biochemical phenotypes, corroborating the critical role of KDSR in proplatelet formation. Finally, Kdsr depletion in zebrafish recapitulated the thrombocytopenia and showed biochemical changes similar to those observed in the affected siblings. These studies support an important role for sphingolipids as regulators of cytoskeletal organization during megakaryopoiesis and proplatelet formation.
Assuntos
Oxirredutases do Álcool/deficiência , Plaquetas/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Megacariócitos/patologia , Esfingolipídeos/metabolismo , Trombocitopenia/etiologia , Oxirredutases do Álcool/genética , Animais , Plaquetas/metabolismo , Diferenciação Celular , Células Cultivadas , Criança , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Megacariócitos/metabolismo , Metabolômica , Mutação , Linhagem , Prognóstico , Trombocitopenia/metabolismo , Trombocitopenia/patologia , Peixe-ZebraRESUMO
Variants in ETV6, which encodes a transcription repressor of the E26 transformation-specific family, have recently been reported to be responsible for inherited thrombocytopenia and hematologic malignancy. We sequenced the DNA from cases with unexplained dominant thrombocytopenia and identified six likely pathogenic variants in ETV6, of which five are novel. We observed low repressive activity of all tested ETV6 variants, and variants located in the E26 transformation-specific binding domain (encoding p.A377T, p.Y401N) led to reduced binding to corepressors. We also observed a large expansion of megakaryocyte colony-forming units derived from variant carriers and reduced proplatelet formation with abnormal cytoskeletal organization. The defect in proplatelet formation was also observed in control CD34+ cell-derived megakaryocytes transduced with lentiviral particles encoding mutant ETV6. Reduced expression levels of key regulators of the actin cytoskeleton CDC42 and RHOA were measured. Moreover, changes in the actin structures are typically accompanied by a rounder platelet shape with a highly heterogeneous size, decreased platelet arachidonic response, and spreading and retarded clot retraction in ETV6 deficient platelets. Elevated numbers of circulating CD34+ cells were found in p.P214L and p.Y401N carriers, and two patients from different families suffered from refractory anemia with excess blasts, while one patient from a third family was successfully treated for acute myeloid leukemia. Overall, our study provides novel insights into the role of ETV6 as a driver of cytoskeletal regulatory gene expression during platelet production, and the impact of variants resulting in platelets with altered size, shape and function and potentially also in changes in circulating progenitor levels.