Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant J ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38723112

RESUMO

Gene expression analysis is essential for understanding the mechanisms involved in plant development. Here, we developed M2WISH, a protocol based on MicroWave treatment for Wholemount mRNA In Situ Hybridization in Arabidopsis. By permeabilizing tissues without damaging cellular organization this protocol results in high and homogeneous hybridization yields that enable systematic analysis of gene expression dynamics. Moreover, when combined with cellular histochemical staining, M2WISH successfully provides a cellular resolution of gene expression. Thus, we demonstrate the robustness of M2WISH with 10 genes on roots, aerial meristems, leaves, and embryos in the seed. We applied M2WISH to study the spatial dynamics of WUSCHEL (WUS) and CLAVATA3 (CLV3) expression during in vitro meristematic conversion of roots into shoot apical meristems. Thus, we showed that shoot apical meristems could arise from two different types of root structures that differed by their CLV3 gene expression patterns. We constructed 3D cellular representations of WUS and CLV3 gene co-expression pattern and stressed the variability inherent to meristem conversion. Thus, this protocol generates a large amount of data on the localization of gene expression, which can be used to model complex systems.

2.
iScience ; 27(4): 109343, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38510147

RESUMO

Spatial genome organization within the nucleus influences major biological processes and is impacted by the configuration of linear chromosomes. Here, we applied 3D spatial statistics and modeling on high-resolution telomere and centromere 3D-structured illumination microscopy images in cancer cells. We found a multi-scale organization of telomeres that dynamically evolved from a mixed clustered-and-regular distribution in early G1 to a purely regular distribution as cells progressed through the cell cycle. In parallel, our analysis revealed two pools of peripheral and internal telomeres, the proportions of which were inverted during the cell cycle. We then conducted a targeted screen using MadID to identify the molecular pathways driving or maintaining telomere anchoring to the nuclear envelope observed in early G1. Lamina-associated polypeptide (LAP) proteins were found transiently localized to telomeres in anaphase, a stage where LAP2α initiates the reformation of the nuclear envelope, and impacted telomere redistribution in the next interphase together with their partner barrier-to-autointegration factor (BAF).

3.
Quant Plant Biol ; 4: e1, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077702

RESUMO

Plant organ morphogenesis spans several orders of magnitude in time and space. Because of limitations in live-imaging, analysing whole organ growth from initiation to mature stages typically rely on static data sampled from different timepoints and individuals. We introduce a new model-based strategy for dating organs and for reconstructing morphogenetic trajectories over unlimited time windows based on static data. Using this approach, we show that Arabidopsis thaliana leaves are initiated at regular 1-day intervals. Despite contrasted adult morphologies, leaves of different ranks exhibited shared growth dynamics, with linear gradations of growth parameters according to leaf rank. At the sub-organ scale, successive serrations from same or different leaves also followed shared growth dynamics, suggesting that global and local leaf growth patterns are decoupled. Analysing mutants leaves with altered morphology highlighted the decorrelation between adult shapes and morphogenetic trajectories, thus stressing the benefits of our approach in identifying determinants and critical timepoints during organ morphogenesis.

4.
Development ; 149(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35575098

RESUMO

Boundary domains delimit and organize organ growth throughout plant development almost relentlessly, building plant architecture and morphogenesis. Boundary domains display reduced growth and orchestrate development of adjacent tissues in a non-cell-autonomous manner. How these two functions are achieved remains elusive despite the identification of several boundary-specific genes. Here, we show using morphometrics at the organ and cellular levels that leaf boundary domain development requires SPINDLY (SPY), an O-fucosyltransferase, to act as cell growth repressor. Furthermore, we show that SPY acts redundantly with the CUP-SHAPED COTYLEDON transcription factors (CUC2 and CUC3), which are major determinants of boundaries development. Accordingly, at the molecular level CUC2 and SPY repress a common set of genes involved in cell wall loosening, providing a molecular framework for the growth repression associated with boundary domains. Atomic force microscopy confirmed that young leaf boundary domain cells have stiffer cell walls than marginal outgrowth. This differential cell wall stiffness was reduced in spy mutant plants. Taken together, our data reveal a concealed CUC2 cell wall-associated gene network linking tissue patterning with cell growth and mechanics.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes , Mutação , Folhas de Planta/genética , Folhas de Planta/metabolismo
5.
Development ; 143(18): 3417-28, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27387872

RESUMO

A major challenge in morphometrics is to analyse complex biological shapes formed by structures at different scales. Leaves exemplify this challenge as they combine differences in their overall shape with smaller shape variations at their margin, leading to lobes or teeth. Current methods based on contour or on landmark analysis are successful in quantifying either overall leaf shape or leaf margin dissection, but fail in combining the two. Here, we present a comprehensive strategy and its associated freely available platform for the quantitative, multiscale analysis of the morphology of leaves with different architectures. For this, biologically relevant landmarks are automatically extracted and hierarchised, and used to guide the reconstruction of accurate average contours that properly represent both global and local features. Using this method, we establish a quantitative framework of the developmental trajectory of Arabidopsis leaves of different ranks and retrace the origin of leaf heteroblasty. When applied to different mutant forms, our method can contribute to a better understanding of gene function, as we show here for the role of CUC2 during Arabidopsis leaf serration. Finally, we illustrate the wider applicability of our tool by analysing hand morphometrics.


Assuntos
Folhas de Planta/anatomia & histologia , Software , Arabidopsis/anatomia & histologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Microscopia de Fluorescência , Folhas de Planta/metabolismo
6.
Plant J ; 87(2): 230-42, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27121260

RESUMO

The localization of proteins in specific domains or compartments in the 3D cellular space is essential for many fundamental processes in eukaryotic cells. Deciphering spatial organization principles within cells is a challenging task, in particular because of the large morphological variations between individual cells. We present here an approach for normalizing variations in cell morphology and for statistically analyzing spatial distributions of intracellular compartments from collections of 3D images. The method relies on the processing and analysis of 3D geometrical models that are generated from image stacks and that are used to build representations at progressively increasing levels of integration, ultimately revealing statistical significant traits of spatial distributions. To make this methodology widely available to end-users, we implemented our algorithmic pipeline into a user-friendly, multi-platform, and freely available software. To validate our approach, we generated 3D statistical maps of endomembrane compartments at subcellular resolution within an average epidermal root cell from collections of image stacks. This revealed unsuspected polar distribution patterns of organelles that were not detectable in individual images. By reversing the classical 'measure-then-average' paradigm, one major benefit of the proposed strategy is the production and display of statistical 3D representations of spatial organizations, thus fully preserving the spatial dimension of image data and at the same time allowing their integration over individual observations. The approach and software are generic and should be of general interest for experimental and modeling studies of spatial organizations at multiple scales (subcellular, cellular, tissular) in biological systems.


Assuntos
Células/ultraestrutura , Imageamento Tridimensional/métodos , Arabidopsis/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Software , Análise Espacial , Frações Subcelulares/ultraestrutura
7.
Plant Physiol ; 165(4): 1521-1532, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24948829

RESUMO

Plant growth and organ formation depend on the oriented deposition of load-bearing cellulose microfibrils in the cell wall. Cellulose is synthesized by a large relative molecular weight cellulose synthase complex (CSC), which comprises at least three distinct cellulose synthases. Cellulose synthesis in plants or bacteria also requires the activity of an endo-1,4-ß-d-glucanase, the exact function of which in the synthesis process is not known. Here, we show, to our knowledge for the first time, that a leaky mutation in the Arabidopsis (Arabidopsis thaliana) membrane-bound endo-1,4-ß-d-glucanase KORRIGAN1 (KOR1) not only caused reduced CSC movement in the plasma membrane but also a reduced cellulose synthesis inhibitor-induced accumulation of CSCs in intracellular compartments. This suggests a role for KOR1 both in the synthesis of cellulose microfibrils and in the intracellular trafficking of CSCs. Next, we used a multidisciplinary approach, including live cell imaging, gel filtration chromatography analysis, split ubiquitin assays in yeast (Saccharomyces cerevisiae NMY51), and bimolecular fluorescence complementation, to show that, in contrast to previous observations, KOR1 is an integral part of the primary cell wall CSC in the plasma membrane.

8.
Plant J ; 77(1): 71-84, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24147885

RESUMO

During cytokinesis a new crosswall is rapidly laid down. This process involves the formation at the cell equator of a tubulo-vesicular membrane network (TVN). This TVN evolves into a tubular network (TN) and a planar fenestrated sheet, which extends at its periphery before fusing to the mother cell wall. The role of cell wall polymers in cell plate assembly is poorly understood. We used specific stains and GFP-labelled cellulose synthases (CESAs) to show that cellulose, as well as three distinct CESAs, accumulated in the cell plate already at the TVN stage. This early presence suggests that cellulose is extruded into the tubular membrane structures of the TVN. Co-localisation studies using GFP-CESAs suggest the delivery of cellulose synthase complexes (CSCs) to the cell plate via phragmoplast-associated vesicles. In the more mature TN part of the cell plate, we observed delivery of GFP-CESA from doughnut-shaped organelles, presumably Golgi bodies. During the conversion of the TN into a planar fenestrated sheet, the GFP-CESA density diminished, whereas GFP-CESA levels remained high in the TVN zone at the periphery of the expanding cell plate. We observed retrieval of GFP-CESA in clathrin-containing structures from the central zone of the cell plate and from the plasma membrane of the mother cell, which may contribute to the recycling of CESAs to the peripheral growth zone of the cell plate. These observations, together with mutant phenotypes of cellulose-deficient mutants and pharmacological experiments, suggest a key role for cellulose synthesis already at early stages of cell plate assembly.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Glucosiltransferases/genética , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Parede Celular/ultraestrutura , Clatrina/metabolismo , Citocinese , Genes Reporter , Glucosiltransferases/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Isoenzimas , Microscopia Confocal , Microtúbulos/ultraestrutura , Modelos Biológicos , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão , Plântula/citologia , Plântula/genética , Plântula/metabolismo
9.
PLoS Comput Biol ; 6(7): e1000853, 2010 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-20628576

RESUMO

In eukaryotes, the interphase nucleus is organized in morphologically and/or functionally distinct nuclear "compartments". Numerous studies highlight functional relationships between the spatial organization of the nucleus and gene regulation. This raises the question of whether nuclear organization principles exist and, if so, whether they are identical in the animal and plant kingdoms. We addressed this issue through the investigation of the three-dimensional distribution of the centromeres and chromocenters. We investigated five very diverse populations of interphase nuclei at different differentiation stages in their physiological environment, belonging to rabbit embryos at the 8-cell and blastocyst stages, differentiated rabbit mammary epithelial cells during lactation, and differentiated cells of Arabidopsis thaliana plantlets. We developed new tools based on the processing of confocal images and a new statistical approach based on G- and F- distance functions used in spatial statistics. Our original computational scheme takes into account both size and shape variability by comparing, for each nucleus, the observed distribution against a reference distribution estimated by Monte-Carlo sampling over the same nucleus. This implicit normalization allowed similar data processing and extraction of rules in the five differentiated nuclei populations of the three studied biological systems, despite differences in chromosome number, genome organization and heterochromatin content. We showed that centromeres/chromocenters form significantly more regularly spaced patterns than expected under a completely random situation, suggesting that repulsive constraints or spatial inhomogeneities underlay the spatial organization of heterochromatic compartments. The proposed technique should be useful for identifying further spatial features in a wide range of cell types.


Assuntos
Núcleo Celular/química , Centrômero/química , Heterocromatina/química , Imageamento Tridimensional , Modelos Estatísticos , Animais , Arabidopsis/citologia , Embrião de Mamíferos/citologia , Feminino , Glândulas Mamárias Animais/citologia , Microscopia Confocal , Método de Monte Carlo , Proteínas Nucleares/química , Coelhos
10.
Bioinformatics ; 26(19): 2468-9, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20631159

RESUMO

UNLABELLED: ANAIS is a user-friendly web-based tool for the processing of NimbleGen expression data. The interface reads single-channel microarray files generated by NimbleGen platforms and produces easily interpretable graphical and numerical results. It provides biologists six turnkey analysis modules-normalization, probe to gene, quality controls, differential expression, detection, queries and clustering-to explore quickly, freely and without the need for computer programming, NimbleGen transcriptome data. AVAILABILITY: http://anais.versailles.inra.fr.


Assuntos
Perfilação da Expressão Gênica/métodos , Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Software , Algoritmos , Interface Usuário-Computador
11.
Plant Methods ; 5: 11, 2009 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-19650905

RESUMO

BACKGROUND: Fluorescent hybridization techniques are widely used to study the functional organization of different compartments within the mammalian nucleus. However, few examples of such studies are known in the plant kingdom. Indeed, preservation of nuclei 3D structure, which is required for nuclear organization studies, is difficult to fulfill. RESULTS: We report a rapid protocol for fluorescent in situ hybridization (FISH) performed on 3D isolated nuclei and thin cryosectioned leaves of Arabidopsis thaliana. The use of direct labeling minimized treatment steps, shortening the overall procedure. Using image analysis, we measured different parameters related to nucleus morphology and overall 3D structure. CONCLUSION: Our work describes a 3D-FISH protocol that preserves the 3D structure of Arabidopsis interphase nuclei. Moreover, we report for the first time FISH using cryosections of Arabidopsis leaves. This protocol is a valuable tool to investigate nuclear architecture and chromatin organization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA