Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(51): 21801-21814, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38078756

RESUMO

Cyanobacterial harmful algal blooms (cHABs) have the potential to adversely affect public health through the production of toxins such as microcystins, which consist of numerous molecularly distinct congeners. Microcystins have been observed in the atmosphere after emission from freshwater lakes, but little is known about the health effects of inhaling microcystins and the factors contributing to microcystin aerosolization. This study quantified total microcystin concentrations in water and aerosol samples collected around Grand Lake St. Marys (GLSM), Ohio. Microcystin concentrations in water samples collected on the same day ranged from 13 to 23 µg/L, dominated by the d-Asp3-MC-RR congener. In particulate matter <2.5 µm (PM2.5), microcystin concentrations up to 156 pg/m3 were detected; the microcystins were composed primarily of d-Asp3-MC-RR, with additional congeners (d-Asp3-MC-HtyR and d-Asp3-MC-LR) observed in a sample collected prior to a storm event. The PM size fraction containing the highest aerosolized MC concentration ranged from 0.44 to 2.5 µm. Analysis of total bacteria by qPCR targeting 16S rDNA revealed concentrations up to 9.4 × 104 gc/m3 in aerosol samples (≤3 µm), while a marker specific to cyanobacteria was not detected in any aerosol samples. Concentrations of aerosolized microcystins varied even when concentrations in water were relatively constant, demonstrating the importance of meteorological conditions (wind speed and direction) and aerosol generation mechanism(s) (wave breaking, spillway, and aeration systems) when evaluating inhalation exposure to microcystins and subsequent impacts on human health.


Assuntos
Cianobactérias , Proliferação Nociva de Algas , Humanos , Microcistinas/análise , Toxinas de Cianobactérias , Lagos/análise , Lagos/microbiologia , Aerossóis , Água , Atmosfera/análise
2.
Water Res ; 247: 120816, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952399

RESUMO

As one of five Laurentian Great Lakes, Lake Erie ranks among the top freshwater drinking sources and ecosystems globally. Historical and current agriculture mismanagement and climate change sustains the environmental landscape for late summer cyanobacterial harmful algal blooms, and consequently, cyanotoxins such as microcystin (MC). Microcystin microbial degradation is a promising mitigation strategy, however the mechanisms controlling the breakdown of MCs in Lake Erie are not well understood. Pelee Island, Ontario, Canada is located in the western basin of Lake Erie and the bacterial community in the sand has demonstrated the capacity of metabolizing the toxin. Through a multi-omic approach, the metabolic, functional and taxonomical signatures of the Pelee Island microbial community during MC-LR degradation was investigated over a 48-hour period to comprehensively study the degradation mechanism. Cleavage of bonds surrounding nitrogen atoms and the upregulation of nitrogen deamination (dadA, alanine dehydrogenase, leucine dehydrogenase) and assimilation genes (glnA, gltB) suggests a targeted isolation of nitrogen by the microbial community for energy production. Methylotrophic pathways RuMP and H4MPT control assimilation and dissimilation of carbon, respectively and differential abundance of Methylophilales indicates an interconnected role through electron exchange of denitrification and methylotrophic pathways. The detected metabolites did not resolve a clear breakdown pathway, but rather the diversity of products in combination with taxonomic and functional results supports that a variety of strategies are applied, such as epoxidation, hydroxylation, and aromatic degradation. Annual repeated exposure to the toxin may have allowed the community to adaptatively establish a novel pathway through functional plasticity and horizontal gene transfer. The culmination of these results reveals the complexity of the Pelee Island sand community and supports a dynamic and cooperative metabolism between microbial species to achieve MC degradation.


Assuntos
Cianobactérias , Microbiota , Lagos/microbiologia , Microcistinas/metabolismo , Areia , Cianobactérias/metabolismo , Nitrogênio/metabolismo , Ontário
3.
Environ Sci Technol ; 56(24): 17902-17912, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36414474

RESUMO

The risk of human exposure to cyanotoxins is partially influenced by the location of toxin-producing cyanobacteria in waterbodies. Cyanotoxin production can occur throughout the water column, with deep water production representing a potential public health concern, specifically for drinking water supplies. Deep cyanobacteria layers are often unreported, and it remains to be seen if lower incident rates reflect an uncommon phenomenon or a monitoring bias. Here, we examine Sunfish Lake, Ontario, Canada as a case study lake with a known deep cyanobacteria layer. Cyanotoxin and other bioactive metabolite screening revealed that the deep cyanobacteria layer was toxigenic [0.03 µg L-1 microcystins (max) and 2.5 µg L-1 anabaenopeptins (max)]. The deep layer was predominantly composed of Planktothrix isothrix (exhibiting a lower cyanotoxin cell quota), with Planktothrix rubescens (exhibiting a higher cyanotoxin cell quota) found at background levels. The co-occurrence of multiple toxigenic Planktothrix species underscores the importance of routine surveillance for prompt identification leading to early intervention. For instance, microcystin concentrations in Sunfish Lake are currently below national drinking water thresholds, but shifting environmental conditions (e.g., in response to climate change or nutrient modification) could fashion an environment favoring P. rubescens, creating a scenario of greater cyanotoxin production. Future work should monitor the entire water column to help build predictive capacities for identifying waterbodies at elevated risk of developing deep cyanobacteria layers to safeguard drinking water supplies.


Assuntos
Cianobactérias , Água Potável , Humanos , Água Potável/metabolismo , Cianobactérias/metabolismo , Microcistinas/metabolismo , Abastecimento de Água , Lagos/microbiologia , Ontário
4.
Limnol Oceanogr ; 67(7): 1470-1483, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36248197

RESUMO

Cyanobacterial biomass forecasts currently cannot predict the concentrations of microcystin, one of the most ubiquitous cyanotoxins that threaten human and wildlife health globally. Mechanistic insights into how microcystin production and biodegradation by heterotrophic bacteria change spatially and throughout the bloom season can aid in toxin concentration forecasts. We quantified microcystin production and biodegradation during two growth seasons in two western Lake Erie sites with different physicochemical properties commonly plagued by summer Microcystis blooms. Microcystin production rates were greater with elevated nutrients than under ambient conditions and were highest nearshore during the initial phases of the bloom, and production rates were lower in later bloom phases. We examined biodegradation rates of the most common and toxic microcystin by adding extracellular stable isotope-labeled microcystin-LR (1 µg L-1), which remained stable in the abiotic treatment (without bacteria) with minimal adsorption onto sediment, but strongly decreased in all unaltered biotic treatments, suggesting biodegradation. Greatest biodegradation rates (highest of -8.76 d-1, equivalent to the removal of 99.98% in 18 h) were observed during peak bloom conditions, while lower rates were observed with lower cyanobacteria biomass. Cell-specific nitrogen incorporation from microcystin-LR by nanoscale imaging mass spectrometry showed that a small percentage of the heterotrophic bacterial community actively degraded microcystin-LR. Microcystin production and biodegradation rates, combined with the microcystin incorporation by single cells, suggest that microcystin predictive models could be improved by incorporating toxin production and biodegradation rates, which are influenced by cyanobacterial bloom stage (early vs. late bloom), nutrient availability, and bacterial community composition.

5.
Front Mol Neurosci ; 15: 934630, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966014

RESUMO

Environmental exposure to heavy metal lead, a public health hazard in many post-industrial cities, causes hearing impairment upon long-term exposure. Lead-induced cochlear and vestibular dysfunction is well-documented in animal models. Although short-term exposure to lead at concentrations relevant to environmental settings does not cause significant shifts in hearing thresholds in adults, moderate- to low-level lead exposures induce neuronal damage and synaptic dysfunction. We reported that lead exposure induces oxidative stress in the mouse cochlea. However, lead-induced nitrative stress and potential damage to cochlear ribbon synapses are yet to be fully understood. Therefore, this study has evaluated cochlear synaptopathy and nitrative stress in young-adult mice exposed to 2 mM lead acetate for 28 days. Inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated that this exposure significantly increased the blood lead levels. Assessment of hair cell loss by immunohistochemistry analysis and outer hair cell (OHC) activity by recording distortion product otoacoustic emissions (DPOAEs) indicated that the structure and function of the hair cells were not affected by lead exposure. However, this exposure significantly decreased the expression of C-terminal-binding protein-2 (CtBP2) and GluA2, pre- and post-synaptic protein markers in the inner hair cell synapses, particularly in the basal turn of the organ of Corti, suggesting lead-induced disruption of ribbon synapses. In addition, lead exposure significantly increased the nitrotyrosine levels in spiral ganglion cells, suggesting lead-induced nitrative stress in the cochlea. Collectively, these findings suggest that lead exposure even at levels that do not affect the OHCs induces cochlear nitrative stress and causes cochlear synaptopathy.

6.
Environ Sci Technol ; 56(3): 1652-1663, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35018784

RESUMO

Cyanotoxins called microcystins (MCs) are highly toxic and can be present in drinking water sources. Determining the structure of MCs is paramount because of its effect on toxicity. Though over 300 MC congeners have been discovered, many remain unidentified. Herein, a method is described for the putative identification of MCs using liquid chromatography (LC) coupled with high-resolution (HR) Orbitrap mass spectrometry (MS) and a new bottom-up sequencing strategy. Maumee River water samples were collected during a harmful algal bloom and analyzed by LC-MS with simultaneous HRMS and MS/MS. Unidentified ions with characteristic MC fragments (135 and 213 m/z) were recognized as possible novel MC congeners. An innovative workflow was developed for the putative identification of these ions. Python code was written to generate the potential structures of unidentified MCs and to assign ions after the fragmentation for structural confirmation. The workflow enabled the putative identification of eight previously reported MCs for which standards are not available and two newly discovered congeners, MC-HarR and MC-E(OMe)R.


Assuntos
Microcistinas , Espectrometria de Massas em Tandem , Cromatografia Líquida , Água Doce , Proliferação Nociva de Algas , Microcistinas/análise
7.
Harmful Algae ; 108: 102080, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34588116

RESUMO

Monitoring of cyanobacterial bloom biomass in large lakes at high resolution is made possible by remote sensing. However, monitoring cyanobacterial toxins is only feasible with grab samples, which, with only sporadic sampling, results in uncertainties in the spatial distribution of toxins. To address this issue, we conducted two intensive "HABs Grabs" of microcystin (MC)-producing Microcystis blooms in the western basin of Lake Erie. These were one-day sampling events during August of 2018 and 2019 in which 100 and 172 grab samples were collected, respectively, within a six-hour window covering up to 2,270 km2 and analyzed using consistent methods to estimate the total mass of MC. The samples were analyzed for 57 parameters, including toxins, nutrients, chlorophyll, and genomics. There were an estimated 11,513 kg and 30,691 kg of MCs in the western basin during the 2018 and 2019 HABs Grabs, respectively. The bloom boundary poses substantial issues for spatial assessments because MC concentration varied by nearly two orders of magnitude over very short distances. The MC to chlorophyll ratio (MC:chl) varied by a factor up to 5.3 throughout the basin, which creates challenges for using MC:chl to predict MC concentrations. Many of the biomass metrics strongly correlated (r > 0.70) with each other except chlorophyll fluorescence and phycocyanin concentration. While MC and chlorophyll correlated well with total phosphorus and nitrogen concentrations, MC:chl correlated with dissolved inorganic nitrogen. More frequent MC data collection can overcome these issues, and models need to account for the MC:chl spatial heterogeneity when forecasting MCs.


Assuntos
Cianobactérias , Microcystis , Proliferação Nociva de Algas , Lagos , Fósforo
8.
Toxins (Basel) ; 12(4)2020 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-32325806

RESUMO

A method was developed to extract and quantify microcystins (MCs) from mouse liver with limits of quantification (LOQs) lower than previously reported. MCs were extracted from 40-mg liver samples using 85:15 (v:v) CH3CN:H2O containing 200 mM ZnSO4 and 1% formic acid. Solid-phase extraction with a C18 cartridge was used for sample cleanup. MCs were detected and quantified using HPLC-orbitrap-MS with simultaneous MS/MS detection of the 135.08 m/z fragment from the conserved Adda amino acid for structural confirmation. The method was used to extract six MCs (MC-LR, MC-RR, MC-YR, MC-LA, MC-LF, and MC-LW) from spiked liver tissue and the MC-LR cysteine adduct (MC-LR-Cys) created by the glutathione detoxification pathway. Matrix-matched internal standard calibration curves were constructed for each MC (R2 ≥ 0.993), with LOQs between 0.25 ng per g of liver tissue (ng/g) and 0.75 ng/g for MC-LR, MC-RR, MC-YR, MC-LA, and MC-LR-Cys, and 2.5 ng/g for MC-LF and MC-LW. The protocol was applied to extract and quantify MC-LR and MC-LR-Cys from the liver of mice that had been gavaged with 50 µg or 100 µg of MC-LR per kg bodyweight and were euthanized 2 h, 4 h, or 48 h after final gavage. C57Bl/6J (wild type, control) and Leprdb/J (experiment) mice were used as a model to study non-alcoholic fatty liver disease. The Leprdb/J mice were relatively inefficient in metabolizing MC-LR into MC-LR-Cys, which is an important defense mechanism against MC-LR exposure. Trends were also observed as a function of MC-LR gavage amount and time between final MC-LR gavage and euthanasia/organ harvest.


Assuntos
Fígado/química , Microcistinas/análise , Animais , Cromatografia Líquida , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microcistinas/farmacocinética , Espectrometria de Massas em Tandem
9.
Environ Sci Technol ; 54(8): 4769-4780, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32186187

RESUMO

Harmful algal blooms (HABs) caused by cyanobacteria in freshwater environments produce toxins (e.g., microcystin) that are harmful to human and animal health. HAB frequency and intensity are increasing with greater nutrient runoff and a warming climate. Lake spray aerosol (LSA) released from freshwater lakes has been identified on lakeshores and after transport inland, including from lakes with HABs, but little is known about the potential for HAB toxins to be incorporated into LSA. In this study, freshwater samples were collected from two lakes in Michigan: Mona Lake during a severe HAB with microcystin concentrations (>200 µg/L) well above the Environmental Protection Agency (EPA) recommended "do not drink" level (1.6 µg/L) and Muskegon Lake without a HAB (<1 µg/L microcystin). Microcystin toxins were identified in freshwater, as well as aerosol particles generated in the laboratory from Mona Lake water by liquid chromatography-tandem mass spectrometry (LC-MS/MS) at atmospheric concentrations up to 50 ± 20 ng/m3. Enrichment of hydrophobic microcystin congeners (e.g., microcystin-LR) was observed in aerosol particles relative to bulk freshwater, while enrichment of hydrophilic microcystin (e.g., microcystin-RR) was lower. As HABs increase in a warming climate, understanding and quantifying the emissions of toxins into the atmosphere is crucial for evaluating the health consequences of HABs.


Assuntos
Proliferação Nociva de Algas , Lagos , Aerossóis , Animais , Cromatografia Líquida , Humanos , Michigan , Microcistinas , Espectrometria de Massas em Tandem
10.
Toxins (Basel) ; 11(11)2019 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-31717642

RESUMO

Based on current structural and statistical calculations, thousands of microcystins (MCs) can exist; yet, to date, only 246 MCs were identified and only 12 commercial MC standards are available. Standard mass spectrometry workflows for known and unknown MCs need to be developed and validated for basic and applied harmful algal bloom research to advance. Our investigation focuses on samples taken in the spring of 2018 from an impoundment fed by Oser and Bischoff Reservoirs, Indiana, United States of America (USA). The dominant cyanobacterium found during sampling was Planktothrix agardhii. The goal of our study was to identify and quantify the MCs in the impoundment sample using chemical derivatization and mass spectrometry. Modifying these techniques to use online concentration liquid chromatography tandem mass spectrometry (LC-MS/MS), two untargeted MCs have been identified, [d-Asp3, Dhb7]-MC-LR and [Dhb7]-MC-YR. [Dhb7]-MC-YR is not yet reported in the literature to date, and this was the first reported incidence of Dhb MCs in the United States. Furthermore, it was discovered that the commercially available [d-Asp3]-MC-RR standard was [d-Asp3, Dhb7]-MC-RR. This study highlights a workflow utilizing online concentration LC-MS/MS, high-resolution MS (HRMS), and chemical derivatization to identify isobaric MCs.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Proliferação Nociva de Algas , Microcistinas/análise , Poluentes Químicos da Água/análise , Cromatografia Líquida , Cianobactérias/metabolismo , Monitoramento Ambiental/instrumentação , Indiana , Planktothrix , Espectrometria de Massas em Tandem
11.
Toxins (Basel) ; 11(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30609666

RESUMO

Fast and reliable workflows are needed to quantitate microcystins (MCs), a ubiquitous class of hepatotoxic cyanotoxins, so that the impact of human and environmental exposure is assessed quickly and minimized. Our goal was to develop a high-throughput online concentration liquid chromatography tandem mass spectrometry (LC/MS/MS) workflow to quantitate the 12 commercially available MCs and nodularin in surface and drinking waters. The method run time was 8.5 min with detection limits in the low ng/L range and minimum reporting levels between 5 and 10 ng/L. This workflow was benchmarked by determining the prevalence of MCs and comparing the Adda-ELISA quantitation to our new workflow from 122 samples representing 31 waterbodies throughout Michigan. The frequency of MC occurrence was MC-LA > LR > RR > D-Asp³-LR > YR > HilR > WR > D-Asp³-RR > HtyR > LY = LW = LF, while MC-RR had the highest concentrations. MCs were detected in 33 samples and 13 of these samples had more than 20% of their total MC concentration from MCs not present in US Environmental Protection Agency (US EPA) Method 544. Furthermore, seasonal deviations between the LC/MS/MS and Adda-ELISA data suggest Adda-ELISA cross-reacts with MC degradation products. This workflow provides less than 24-h turnaround for quantification and also identified key differences between LC/MS/MS and ELISA quantitation that should be investigated further.


Assuntos
Lagos/análise , Microcistinas/análise , Poluentes Químicos da Água/análise , Monitoramento Biológico , Cromatografia Líquida , Ensaio de Imunoadsorção Enzimática , Michigan , Sistemas On-Line , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
12.
ACS Chem Neurosci ; 5(4): 275-81, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24517838

RESUMO

The goal of this study was to determine whether a reduction in brain-derived neurotrophic factor (BDNF) levels in female mice leads to dopaminergic system dysregulation. Through a series of in vivo brain microdialysis and slice voltammetry experiments, we discerned that female BDNF heterozygous (BDNF(+/-)) mice are hyperdopaminergic, similar to their male BDNF(+/-) counterparts. Zero-net flux microdialysis results showed that female BDNF(+/-) mice had increased striatal extracellular dopamine levels, while stimulated regional release by high potassium concentrations potentiated dopamine release through vesicular-mediated depolarization. Using the complementary technique of fast scan cyclic voltammetry, electrical stimulation evoked greater dopamine release in the female BDNF(+/-) mice, whereas dopamine uptake remained unchanged relative to that of female wildtype mice. Following psychostimulant methamphetamine administration, female BDNF(+/-) mice showed potentiated dopamine release compared to their wildtype counterparts. Taken together, these dopamine release impairments in female mice appear to result in a hyperdopaminergic phenotype without concomitant alterations in dopamine uptake.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corpo Estriado/metabolismo , Dopamina/metabolismo , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Feminino , Masculino , Camundongos , Camundongos Knockout , Fatores Sexuais , Regulação para Cima/fisiologia
13.
Anal Chem ; 85(15): 7398-404, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23815757

RESUMO

A recently available boron-doped diamond (BDD) working electrode has been developed for use with high-performance liquid chromatography (HPLC) to aid in the detection of molecules with high redox potentials. In this work, we developed a method using a commercially available BDD working electrode for detecting neurotransmitters from two different families with large oxidation potential differences, namely, dopamine (DA) and adenosine (Ado). Hydrodynamic voltammograms were constructed for DA and Ado, and the optimal potentials for the detection of DA and Ado were determined to be +740 and +1200 mV versus a palladium reference electrode, respectively. A working potential of +840 mV was chosen, and the detection range achieved with the BDD electrode for DA and Ado was from low nanomolar to high millimolar levels. To determine the practical function of the BDD electrode, tissue content was analyzed for seven monoamine and two purine molecules, which were resolved in a single run in less than 28 min. Our results demonstrate that the BDD electrode is sensitive and robust enough to detect monoamine and purine molecules from frontal cortex and striatal mouse samples. Using a BDD electrode opens the possibility of exploring multiple classes of neurotransmitters in a single run using electrochemical detection to probe their interactions.


Assuntos
Adenosina/análise , Boro/química , Cromatografia Líquida de Alta Pressão/instrumentação , Diamante/química , Dopamina/análise , Neurotransmissores/análise , Purinas/química , Adenosina/química , Animais , Dopamina/química , Eletroquímica , Eletrodos , Hidrodinâmica , Modelos Lineares , Camundongos , Neurotransmissores/química , Fatores de Tempo
14.
J Neurochem ; 120(3): 385-95, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21988371

RESUMO

Brain-derived neurotrophic factor (BDNF) modulates the synaptic transmission of several monoaminergic neuronal systems, including forebrain dopamine-containing neurons. Recent evidence shows a strong correlation between neuropsychiatric disorders and BDNF hypofunction. The aim of the present study was to characterize the effect of low endogenous levels of BDNF on dopamine system function in the caudate-putamen using heterozygous BDNF (BDNF(+/-) ) mice. Apparent extracellular dopamine levels in the caudate-putamen, determined by quantitative microdialysis, were significantly elevated in BDNF(+/-) mice compared with wildtype controls (12 vs. 5 nM, respectively). BDNF(+/-) mice also had a potentiated increase in dopamine levels following potassium (120 mM)-stimulation (10-fold) relative to wildtype controls (6-fold). Slice fast-scan cyclic voltammetry revealed that BDNF(+/-) mice had reductions in both electrically evoked dopamine release and dopamine uptake rates in the caudate-putamen. Superfusion of BDNF led to partial recovery of the electrically stimulated dopamine release response in BDNF(+/-) mice. Conversely, tissue accumulation of L-3,4-dihydroxyphenylalanine, extracellular levels of dopamine metabolites, and spontaneous locomotor activity were unaltered. Together, this study indicates that endogenous BDNF influences dopamine system homeostasis by regulating the release and uptake dynamics of pre-synaptic dopamine transmission.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/deficiência , Corpo Estriado/metabolismo , Dopamina/metabolismo , Homeostase/genética , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Cromatografia Líquida , Corpo Estriado/citologia , Corpo Estriado/efeitos dos fármacos , Estimulação Elétrica , Técnicas Eletroquímicas , Líquido Extracelular/efeitos dos fármacos , Líquido Extracelular/metabolismo , Homeostase/efeitos dos fármacos , Ácido Homovanílico/metabolismo , Levodopa/metabolismo , Modelos Lineares , Camundongos , Camundongos Knockout , Microdiálise , Atividade Motora/genética , Cloreto de Potássio/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA