Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 370: 122739, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39368388

RESUMO

INTRODUCTION: Microbial fuel cell (MFC) is a variant of the bio-electro-chemical system that uses microorganisms as biocatalysts to generate bioenergy by oxidizing organic matter. Due to its two-prong feature of simultaneously treating wastewater and generating electricity, it has drawn extensive interest by scientific communities around the world. However, the pollution purifying capacity and power production of MFC at the laboratory scale have tended to remain steady, and there have been no reports of a performance breakthrough. PROBLEM STATEMENT: This research was conducted to produce electricity and evaluate the efficiency of chemical oxygen demand (COD) removal from wastewater containing Citric Acid using a two-chamber microbial fuel cell without an intermediary. METHODOLOGY: In this research, citric acid factory wastewater was used as the substrate, graphite as the electrode, Nafion membrane for proton transfer from anode to cathode, and grape waste as a carbon source. These Experiments were performed at room temperature and neutral pH. Also, the effect of three independent variables mixed liquor suspended solid (MLSS), Carbon: Nitrogen: Phosphorus stoichiometric ratio (COD:TKN:P), and grape waste on electricity production and wastewater treatment was investigated. Then, the optimal values of each variable were determined under favorable conditions for electricity generation and COD reduction. RESULTS: The MFC was conducted at the optimal values of MLSS 1400 mg/L, the stoichiometric ratio of COD:TKN:P 140:10:1, and the grape waste dose of 1.4 g/L. At these conditions, the obtained maximum power density and current density were 18228.10 mW/m2 and 244.44 mA/m2, respectively. The maximum COD removal was 72% achieved in the values of MLSS 1400 mg/L, the stoichiometric ratio of COD:TKN:P equal to 260:10:1, and 1.4 g/L of grape waste. The maximum open circuit voltage was also recorded as 678 mV, obtained at MLSS 3000 mg/L, the stoichiometric ratio of COD:TKN:P equal to 200:10:1, and for a grape waste dose of 2 g/L. CONCLUSION: The results of this research showed that the use of grape waste to supply glucose to microorganisms in the MFC system has a significant effect on increasing energy production and COD removal, and it is recommended to conduct additional research in the future to improve the efficiency. However, scalability and practical application potential of these integrated technologies are the challenges towards their real-world applications in small scale trials.

2.
J Environ Manage ; 180: 390-400, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27262034

RESUMO

In the present study, the potential application of the bio-electro-Fenton (BEF) process for the treatment of medicinal herbs wastewater in a mediator-less microbial fuel cell (MFC) system is investigated. This process is operated in a dual-chamber MFC with anaerobic seed sludge as biocatalyst in an anode chamber under conditions of neutral pH, an aerobic cathode chamber equipped with a Fe@Fe2O3/graphite composite cathode and a Nafion membrane as a separator. The performance of the MFC is determined in three different mixed liquor suspended solids (MLSS) loadings, Nafions (112, 115) and a salt bridge in an air-cathode BEF process, in terms of power generation, chemical oxygen demand (COD) removal efficiency, columbic and energy efficiencies. Under optimal conditions, the batch experiment results show that the cathode chamber of the BEF reactor, equipped with Nafion 112 and inoculated with seed sludge at 3000 mg L(-1) MLSS concentration, produces the maximum power density of 49.76 mW m(-2), 0.56 mg L(-1) and 29 mol L(-1) of H2O2 and Fe(2+), respectively. Under these conditions, the MFC achieves COD removal 78.05% in the anaerobic anode chamber and 84.02% as a result of aerobic processes from the air-cathode BEF chamber, whilst the maximum voltage εcb and εE values are 600 mV, 4.09% and 1.37%, respectively.


Assuntos
Fontes de Energia Bioelétrica , Plantas Medicinais , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Eletricidade , Eletrodos , Compostos Férricos/química , Peróxido de Hidrogênio/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-23802166

RESUMO

The application of coagulation-flocculation (CF) process for treating the paper-recycling wastewater in jar-test experiment was employed. The purpose of the study was aimed to examine the efficiency of alum and poly aluminum chloride (PACl) in combination with a cationic polyacrylamide (C-PAM) in removal of chemical oxygen demand (COD) and turbidity from paper-recycling wastewater. Optimization of CF process were performed by varying independent parameters (coagulants dosage, flocculants dosage, initial COD and pH) using a central composite design (CCD) under response surface methodology (RSM). Maximum set required 4.5 as pH, 40 mg/L coagulants dosage and 4.5 mg/L flocculants dosage at which gave 92% reduction of turbidity, 97% of COD removal and SVI 80 mL/g. The best coagulant and flocculants were alum and chemfloc 3876 at dose of 41 and 7.52 mg/L, respectively, correspondingly at pH of 6.85. These conditions gave 91.30% COD and 95.82% turbidity removals and 12 mL/g SVI.


Assuntos
Modelos Teóricos , Eliminação de Resíduos Líquidos/métodos , Resinas Acrílicas/química , Compostos de Alúmen/química , Hidróxido de Alumínio/química , Análise da Demanda Biológica de Oxigênio , Floculação , Concentração de Íons de Hidrogênio , Resíduos Industriais , Nefelometria e Turbidimetria , Papel , Reciclagem , Águas Residuárias/análise , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA