Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Orthop Res ; 42(5): 950-960, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37975633

RESUMO

Collagen V (Col5) is a quantitatively minor component of collagen fibrils comprising tendon, however, plays a crucial role in regulation of development and dynamic healing processes. Clinically, patients with COL5a1 haploinsufficiency, known as classic Ehlers-Danlos Syndrome (cEDS), present with hyperextensible skin, joint instability and laxity, with females more likely to be affected. Previous studies in Col5-deficient mice indicated that reduced Col5a1 expression leads to a reduction in stiffness, fibril deposition, and altered fibril structure. Additionally, Col5-deficient male tendons demonstrated altered healing compared to wild-type tendons, however female mice have not yet been studied utilizing this model. Along with clinical differences between sexes in cEDS patient populations, differences in hormone physiology may be a factor influencing tendon health. Therefore, the objective of this study was to utilize a Col5a1+/ - female mouse model, to determine the effect of Col5 on tendon cell morphology, cell density, tissue composition, and mechanical properties throughout healing. We hypothesized that reduction in Col5 expression would result in an abnormal wound matrix post-injury, resulting in reduced mechanical properties compared to normal tendons. Following patellar tendon surgery, mice were euthanized at 1, 3, and 6-week post-injury. Col5-deficient tendons demonstrated altered and decreased healing compared to WT tendons. The lack of resolution in cellularity by 6-week post-injury in Col5-deficient tendons influenced the decreased mechanical properties. Stiffness did not increase post-injury in Col5-deficient mice, and collagen fiber realignment was delayed during mechanical loading. Therefore, increased Col5a1 expression post-injury is necessary to re-establish matrix engagement and cellularity throughout tendon healing.


Assuntos
Síndrome de Ehlers-Danlos , Ligamento Patelar , Camundongos , Humanos , Masculino , Animais , Feminino , Haploinsuficiência , Colágeno/metabolismo , Tendões/metabolismo , Contagem de Células
2.
iScience ; 26(7): 107225, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37485359

RESUMO

Collagen XII, belonging to the fibril-associated collagens, is a homotrimeric secreted extracellular matrix (ECM) protein encoded by the COL12A1 gene. Mutations in the human COL12A1 gene cause an Ehlers-Danlos/myopathy overlap syndrome leading to skeletal abnormalities and muscle weakness. Here, we studied the role of collagen XII in joint pathophysiology by analyzing collagen XII deficient mice and human patients. We found that collagen XII is widely expressed across multiple connective tissue of the developing joint. Lack of collagen XII in mice destabilizes tendons and the femoral trochlear groove to induce patellar subluxation in the patellofemoral joint. These changes are associated with an ECM damage response in tendon and secondary quadriceps muscle degeneration. Moreover, patellar subluxation was also identified as a clinical feature of human patients with collagen XII deficiency. The results provide an explanation for joint hyperlaxity in mice and human patients with collagen XII deficiency.

3.
Front Cell Dev Biol ; 11: 1129000, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936682

RESUMO

Collagen XII, a fibril-associated collagen with interrupted triple helices (FACIT), influences fibrillogenesis in numerous tissues. In addition to this extracellular function, collagen XII also directly regulates cellular function. Collagen XII is widely expressed in connective tissues, particularly tendons, ligaments, and the periodontium and periosteum, where it is enriched in the pericellular regions. Mutations in the collagen XII gene cause myopathic Ehlers-Danlos syndrome (mEDS), an early-onset disease characterized by overlapping connective tissue abnormalities and muscle weakness. Patients with mEDS exhibit delayed motor development, muscle weakness, joint laxity, hypermobility, joint contractures, and abnormal wound healing. A mEDS mouse model was generated by deletion of the Col12a1 gene, resulting in skeletal and muscle abnormalities with disorganized tissue structures and altered mechanical properties. Extracellularly, collagen XII interacts with collagen I fibrils and regulates collagen fibril spacing and assembly during fibrillogenesis. Evidence for the binding of collagen XII to other EDS-related molecules (e.g., decorin and tenascin X) suggests that disruption of ECM molecular interactions is one of the causes of connective tissue pathology in mEDS. Collagen XII also has been shown to influence cell behavior, such as cell shape and cell-cell communication, by providing physical connection between adjacent cells during tissue development and regeneration. The focus of this review is on the functions of collagen XII in development, regeneration, and disease.

4.
Matrix Biol Plus ; 16: 100123, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36311462

RESUMO

Collagen XII is a fibril-associated collagen with interrupted triple helices (FACIT). This non-fibrillar collagen is a homotrimer composed of three α1(XII) chains assembled into a collagenous molecule with a C terminal collagenous domain and a large N terminal non-collagenous domain. During tendon development and growth, collagen XII is broadly expressed throughout the extracellular matrix and enriched pericellularly around tenocytes. Tendons in a global Col12a1 -/- knockout model demonstrated disrupted fibril and fiber structure and disordered tenocyte organization, highlighting the critical regulatory roles of collagen XII in determining tendon structure and function. However, muscle and bone also are affected in the collagen XII knockout model. Therefore, secondary effects on tendon due to involvement of bone and muscle may occur in the global knockout. The global knockout does not allow the definition of intrinsic mechanisms involving collagen XII in tendon versus extrinsic roles involving muscle and bone. To address this limitation, we created and characterized a conditional Col12a1-null mouse model to permit the spatial and temporal manipulation of Col12a1 expression. Collagen XII knockout was targeted to tendons by breeding conditional Col12a1 flox/flox mice with Scleraxis-Cre (Scx-Cre) mice to yield a tendon-specific Col12a1-null mouse line, Col12a1 Δten/Δten . Both mRNA and protein expression in Col12a1 Δten/Δten mice decreased to near baseline levels in flexor digitorum longus tendons (FDL). Collagen XII immuno-localization revealed an absence of reactivity in the tendon proper, but there was reactivity in the cells of the surrounding peritenon. This supports a targeted knockout in tenocytes while peritenon cells from a non-tendon lineage were not targeted and retained collagen XII expression. The tendon-targeted, Col12a1 Δten/Δten  mice had significantly reduced forelimb grip strength, altered gait and a significant decrease in biomechanical properties. While the observed decrease in tendon modulus suggests that differences in tendon material properties in the absence of Col12a1 expression underlie the functional deficiencies. Together, these findings suggest an intrinsic role for collagen XII critical for development of a functional tendon.

5.
Matrix Biol Plus ; 15: 100114, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35818471

RESUMO

Decorin and biglycan are two major small leucine-rich proteoglycans (SLRPs) present in the tendon extracellular matrix that facilitate collagen fibrillogenesis, tissue turnover, and cell signal transduction. Previously, we demonstrated that knockout of decorin prevented the decline of tendon mechanical properties that are associated with aging. The objective of this study was to determine the effects of decorin and biglycan knockdown on tendon structure and mechanics in aged tendons using tamoxifen-inducible knockdown models. We hypothesized that the knockdown of decorin and compound knockdown of decorin and biglycan would prevent age-related declines in tendon mechanics and structure compared to biglycan knockdown and wild-type controls, and that these changes would be exacerbated as the tendons progress towards geriatric ages. To achieve this objective, we created tamoxifen-inducible mouse knockdown models to target decorin and biglycan gene inactivation without the abnormal tendon development associated with traditional knockout models. Knockdown of decorin led to increased midsubstance modulus and decreased stress relaxation in aged tendons. However, these changes were not sustained in the geriatric tendons. Knockdown in biglycan led to no changes in mechanics in the aged or geriatric tendons. Contrary to our hypothesis, the compound decorin/biglycan knockdown tendons did not resemble the decorin knockdown tendons, but resulted in increased viscoelastic properties in the aged and geriatric tendons. Structurally, knockdown of SLRPs, except for the 570d I-Dcn -/- /Bgn -/- group, resulted in alterations to the collagen fibril diameter relative to wild-type controls. Overall, this study identified the differential roles of decorin and biglycan throughout tendon aging in the maintenance of tendon structural and mechanical properties and revealed that the compound decorin and biglycan knockdown phenotype did not resemble the single gene decorin or biglycan models and was detrimental to tendon properties throughout aging.

6.
J Orthop Res ; 40(11): 2546-2556, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35171523

RESUMO

Decorin and biglycan are two small leucine-rich proteoglycans (SLRPs) that regulate collagen fibrillogenesis and extracellular matrix assembly in tendon. The objective of this study was to determine the individual roles of these molecules in maintaining the structural and mechanical properties of tendon during homeostasis in mature mice. We hypothesized that knockdown of decorin in mature tendons would result in detrimental changes to tendon structure and mechanics while knockdown of biglycan would have a minor effect on these parameters. To achieve this objective, we created tamoxifen-inducible mouse knockdown models targeting decorin or biglycan inactivation. This enables the evaluation of the roles of these SLRPs in mature tendon without the abnormal tendon development caused by conventional knockout models. Contrary to our hypothesis, knockdown of decorin resulted in minor alterations to tendon structure and no changes to mechanics while knockdown of biglycan resulted in broad changes to tendon structure and mechanics. Specifically, knockdown of biglycan resulted in reduced insertion modulus, maximum stress, dynamic modulus, stress relaxation, and increased collagen fiber realignment during loading. Knockdown of decorin and biglycan produced similar changes to tendon microstructure by increasing the collagen fibril diameter relative to wild-type controls. Biglycan knockdown also decreased the cell nuclear aspect ratio, indicating a more spindle-like nuclear shape. Overall, the extensive changes to tendon structure and mechanics after knockdown of biglycan, but not decorin, provides evidence that biglycan plays a major role in the maintenance of tendon structure and mechanics in mature mice during homeostasis.


Assuntos
Colágeno , Tendões , Animais , Biglicano/análise , Colágeno/química , Modelos Animais de Doenças , Matriz Extracelular/química , Proteínas da Matriz Extracelular , Camundongos , Tamoxifeno , Tendões/fisiologia
7.
Matrix Biol Plus ; 13: 100099, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35036900

RESUMO

Tendon is a vital musculoskeletal tissue that is prone to degeneration. Proper tendon maintenance requires complex interactions between extracellular matrix components that remain poorly understood. Collagen VI and biglycan are two matrix molecules that localize pericellularly within tendon and are critical regulators of tissue properties. While evidence suggests that collagen VI and biglycan interact within the tendon matrix, the relationship between the two molecules and its impact on tendon function remains unknown. We sought to elucidate potential coordinate roles of collagen VI and biglycan within tendon by defining tendon properties in knockout models of collagen VI, biglycan, or both molecules. We first demonstrated co-expression and co-localization of collagen VI and biglycan within the healing tendon, providing further evidence of cooperation between the two molecules during nascent tendon matrix formation. Deficiency in collagen VI and/or biglycan led to significant reductions in collagen fibril size and tendon mechanical properties. However, collagen VI-null tendons displayed larger reductions in fibril size and mechanics than seen in biglycan-null tendons. Interestingly, knockout of both molecules resulted in similar properties to collagen VI knockout alone. These results indicate distinct and non-additive roles for collagen VI and biglycan within tendon. This work provides better understanding of regulatory interactions between two critical tendon matrix molecules.

8.
Nat Cell Biol ; 23(7): 771-781, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34239060

RESUMO

Tissue turnover requires activation and lineage commitment of tissue-resident stem cells (SCs). These processes are impacted by ageing, but the mechanisms remain unclear. Here, we addressed the mechanisms of ageing in murine hair follicle SCs (HFSCs) and observed a widespread reduction in chromatin accessibility in aged HFSCs, particularly at key self-renewal and differentiation genes, characterized by bivalent promoters occupied by active and repressive chromatin marks. Consistent with this, aged HFSCs showed reduced ability to activate bivalent genes for efficient self-renewal and differentiation. These defects were niche dependent as the transplantation of aged HFSCs into young recipients or synthetic niches restored SC functions. Mechanistically, the aged HFSC niche displayed widespread alterations in extracellular matrix composition and mechanics, resulting in mechanical stress and concomitant transcriptional repression to silence promoters. As a consequence, increasing basement membrane stiffness recapitulated age-related SC changes. These data identify niche mechanics as a central regulator of chromatin state, which, when altered, leads to age-dependent SC exhaustion.


Assuntos
Diferenciação Celular , Autorrenovação Celular , Senescência Celular , Montagem e Desmontagem da Cromatina , Folículo Piloso/fisiologia , Regiões Promotoras Genéticas , Nicho de Células-Tronco , Células-Tronco/fisiologia , Animais , Diferenciação Celular/genética , Linhagem da Célula , Autorrenovação Celular/genética , Células Cultivadas , Senescência Celular/genética , Matriz Extracelular/fisiologia , Inativação Gênica , Folículo Piloso/citologia , Folículo Piloso/metabolismo , Masculino , Mecanotransdução Celular , Camundongos Endogâmicos C57BL , Camundongos Knockout , Envelhecimento da Pele , Células-Tronco/metabolismo , Estresse Mecânico , Transcrição Gênica
9.
Matrix Biol ; 102: 1-19, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34314838

RESUMO

This study queried the role of type V collagen in the post-natal growth of temporomandibular joint (TMJ) condylar cartilage, a hybrid tissue with a fibrocartilage layer covering a secondary hyaline cartilage layer. Integrating outcomes from histology, immunofluorescence imaging, electron microscopy and atomic force microscopy-based nanomechanical tests, we elucidated the impact of type V collagen reduction on TMJ condylar cartilage growth in the type V collagen haploinsufficiency and inducible knockout mice. Reduction of type V collagen led to significantly thickened collagen fibrils, decreased tissue modulus, reduced cell density and aberrant cell clustering in both the fibrous and hyaline layers. Post-natal growth of condylar cartilage involves the chondrogenesis of progenitor cells residing in the fibrous layer, which gives rise to the secondary hyaline layer. Loss of type V collagen resulted in reduced proliferation of these cells, suggesting a possible role of type V collagen in mediating the progenitor cell niche. When the knockout of type V collagen was induced in post-weaning mice after the start of physiologic TMJ loading, the hyaline layer exhibited pronounced thinning, supporting an interplay between type V collagen and occlusal loading in condylar cartilage growth. The phenotype in hyaline layer can thus be attributed to the impact of type V collagen on the mechanically regulated progenitor cell activities. In contrast, knee cartilage does not contain the progenitor cell population at post-natal stages, and develops normal structure and biomechanical properties with the loss of type V collagen. Therefore, in the TMJ, in addition to its established role in regulating the assembly of collagen I fibrils, type V collagen also impacts the mechanoregulation of progenitor cell activities in the fibrous layer. We expect such knowledge to establish a foundation for understanding condylar cartilage matrix development and regeneration, and to yield new insights into the TMJ symptoms in patients with classic Ehlers-Danlos syndrome, a genetic disease due to autosomal mutation of type V collagen.


Assuntos
Cartilagem Articular , Colágeno Tipo V , Animais , Fenômenos Biomecânicos , Cartilagem , Humanos , Hialina , Côndilo Mandibular , Camundongos , Articulação Temporomandibular
10.
Matrix Biol ; 95: 52-67, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33096204

RESUMO

Tendons have a uniaxially aligned structure with a hierarchical organization of collagen fibrils crucial for tendon function. Collagen XII is expressed in tendons and has been implicated in the regulation of fibrillogenesis. It is a non-fibrillar collagen belonging to the Fibril-Associated Collagens with Interrupted Triple Helices (FACIT) family. Mutations in COL12A1 cause myopathic Ehlers Danlos Syndrome with a clinical phenotype involving both joints and tendons supporting critical role(s) for collagen XII in tendon development and function. Here we demonstrate the molecular function of collagen XII during tendon development using a Col12a1 null mouse model. Col12a1 deficiency altered tenocyte shape, formation of interacting cell processes, and organization resulting in impaired cell-cell communication and disruption of hierarchal structure as well as decreased tissue stiffness. Immuno-localization revealed that collagen XII accumulated on the tenocyte surface and connected adjacent tenocytes by building matrix bridges between the cells, suggesting that collagen XII regulates intercellular communication. In addition, there was a decrease in fibrillar collagen I in collagen XII deficient tenocyte cultures compared with controls suggesting collagen XII signaling specifically alters tenocyte biosynthesis. This suggests that collagen XII provides feedback to tenocytes regulating extracellular collagen I. Together, the data indicate dual roles for collagen XII in determination of tendon structure and function. Through association with fibrils it functions in fibril packing, fiber assembly and stability. In addition, collagen XII influences tenocyte organization required for assembly of higher order structure; intercellular communication necessary to coordinate long range order and feedback on tenocytes influencing collagen synthesis. Integration of both regulatory roles is required for the acquisition of hierarchal structure and mechanical properties.


Assuntos
Colágeno Tipo XII/genética , Síndrome de Ehlers-Danlos/genética , Colágenos Fibrilares/genética , Tendões/metabolismo , Animais , Comunicação Celular/genética , Colágeno/genética , Modelos Animais de Doenças , Síndrome de Ehlers-Danlos/patologia , Humanos , Camundongos , Tendões/crescimento & desenvolvimento , Tendões/patologia , Tenócitos/metabolismo , Tenócitos/patologia
11.
Matrix Biol ; 96: 1-17, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33246102

RESUMO

In cartilage tissue engineering, one key challenge is for regenerative tissue to recapitulate the biomechanical functions of native cartilage while maintaining normal mechanosensitive activities of chondrocytes. Thus, it is imperative to discern the micromechanobiological functions of the pericellular matrix, the ~ 2-4 µm-thick domain that is in immediate contact with chondrocytes. In this study, we discovered that decorin, a small leucine-rich proteoglycan, is a key determinant of cartilage pericellular matrix micromechanics and chondrocyte mechanotransduction in vivo. The pericellular matrix of decorin-null murine cartilage developed reduced content of aggrecan, the major chondroitin sulfate proteoglycan of cartilage and a mild increase in collagen II fibril diameter vis-à-vis wild-type controls. As a result, decorin-null pericellular matrix showed a significant reduction in micromodulus, which became progressively more pronounced with maturation. In alignment with the defects of pericellular matrix, decorin-null chondrocytes exhibited decreased intracellular calcium activities, [Ca2+]i, in both physiologic and osmotically evoked fluidic environments in situ, illustrating impaired chondrocyte mechanotransduction. Next, we compared [Ca2+]i activities of wild-type and decorin-null chondrocytes following enzymatic removal of chondroitin sulfate glycosaminoglycans. The results showed that decorin mediates chondrocyte mechanotransduction primarily through regulating the integrity of aggrecan network, and thus, aggrecan-endowed negative charge microenvironment in the pericellular matrix. Collectively, our results provide robust genetic and biomechanical evidence that decorin is an essential constituent of the native cartilage matrix, and suggest that modulating decorin activities could improve cartilage regeneration.


Assuntos
Cartilagem Articular/fisiologia , Decorina/genética , Matriz Extracelular/metabolismo , Mutação com Perda de Função , Agrecanas/metabolismo , Animais , Fenômenos Biomecânicos , Sinalização do Cálcio , Cartilagem Articular/metabolismo , Feminino , Masculino , Mecanotransdução Celular , Camundongos , Regeneração
12.
Matrix Biol ; 94: 77-94, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32950601

RESUMO

Collagen XI is a fibril-forming collagen that regulates collagen fibrillogenesis. Collagen XI is normally associated with collagen II-containing tissues such as cartilage, but it also is expressed broadly during development in collagen I-containing tissues, including tendons. The goals of this study are to define the roles of collagen XI in regulation of tendon fibrillar structure and the relationship to function. A conditional Col11a1-null mouse model was created to permit the spatial and temporal manipulation of Col11a1 expression. We hypothesize that collagen XI functions to regulate fibril assembly, organization and, therefore, tendon function. Previous work using cho mice with ablated Col11a1 alleles supported roles for collagen XI in tendon fibril assembly. Homozygous cho/cho mice have a perinatal lethal phenotype that limited the studies. To circumvent this, a conditional Col11a1flox/flox mouse model was created where exon 3 was flanked with loxP sites. Breeding with Scleraxis-Cre (Scx-Cre) mice yielded a tendon-specific Col11a1-null mouse line, Col11a1Δten/Δten. Col11a1flox/flox mice had no phenotype compared to wild type C57BL/6 mice and other control mice, e.g., Col11a1flox/flox and Scx-Cre. Col11a1flox/flox mice expressed Col11a1 mRNA at levels comparable to wild type and Scx-Cre mice. In contrast, in Col11a1Δten/Δten mice, Col11a1 mRNA expression decreased to baseline in flexor digitorum longus tendons (FDL). Collagen XI protein expression was absent in Col11a1Δten/Δten FDLs, and at ~50% in Col11a1+/Δten compared to controls. Phenotypically, Col11a1Δten/Δten mice had significantly decreased body weights (p < 0.001), grip strengths (p < 0.001), and with age developed gait impairment becoming hypomobile. In the absence of Col11a1, the tendon collagen fibrillar matrix was abnormal when analyzed using transmission electron microscopy. Reducing Col11a1 and, therefore collagen XI content, resulted in abnormal fibril structure, loss of normal fibril diameter control with a significant shift to small diameters and disrupted parallel alignment of fibrils. These alterations in matrix structure were observed in developing (day 4), maturing (day 30) and mature (day 60) mice. Altering the time of knockdown using inducible I-Col11a1-/- mice indicated that the primary regulatory foci for collagen XI was in development. In mature Col11a1Δten/Δten FDLs a significant decrease in the biomechanical properties was observed. The decrease in maximum stress and modulus suggest that fundamental differences in the material properties in the absence of Col11a1 expression underlie the mechanical deficiencies. These data demonstrate an essential role for collagen XI in regulation of tendon fibril assembly and organization occurring primarily during development.


Assuntos
Colágeno Tipo XI/genética , Colágenos Fibrilares/genética , Pele/metabolismo , Tendões/metabolismo , Animais , Cartilagem/crescimento & desenvolvimento , Cartilagem/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/genética , Colágenos Fibrilares/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Pele/patologia , Pele/ultraestrutura , Tendões/crescimento & desenvolvimento , Tendões/patologia , Tendões/ultraestrutura
13.
Cell Rep ; 31(13): 107818, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32610121

RESUMO

Obesity is characterized by adipose tissue inflammation. Because proteoglycans regulate inflammation, here we investigate their role in adipose tissue inflammation in obesity. We find that adipose tissue versican and biglycan increase in obesity. Versican is produced mainly by adipocytes and biglycan by adipose tissue macrophages. Both proteoglycans are also present in adipose tissue from obese human subjects undergoing gastric bypass surgery. Deletion of adipocyte-specific versican or macrophage-specific biglycan in mice reduces macrophage accumulation and chemokine and cytokine expression, although only adipocyte-specific versican deletion leads to sustained improvement in glucose tolerance. Macrophage-derived biglycan activates inflammatory genes in adipocytes. Versican expression increases in cultured adipocytes exposed to excess glucose, and adipocyte-conditioned medium stimulates inflammation in resident peritoneal macrophages, in part because of a versican breakdown product, versikine. These findings provide insights into the role of adipocyte- and macrophage-derived proteoglycans in adipose tissue inflammation in obesity.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/patologia , Biglicano/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Obesidade/patologia , Versicanas/metabolismo , Células 3T3-L1 , Animais , Medula Óssea/metabolismo , Dieta Hiperlipídica , Feminino , Teste de Tolerância a Glucose , Humanos , Hipertrofia , Resistência à Insulina , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Pessoa de Meia-Idade , Omento/metabolismo , Especificidade de Órgãos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Gordura Subcutânea/patologia , Versicanas/genética
14.
Cell ; 182(3): 545-562.e23, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32621799

RESUMO

Scar tissue size following myocardial infarction is an independent predictor of cardiovascular outcomes, yet little is known about factors regulating scar size. We demonstrate that collagen V, a minor constituent of heart scars, regulates the size of heart scars after ischemic injury. Depletion of collagen V led to a paradoxical increase in post-infarction scar size with worsening of heart function. A systems genetics approach across 100 in-bred strains of mice demonstrated that collagen V is a critical driver of postinjury heart function. We show that collagen V deficiency alters the mechanical properties of scar tissue, and altered reciprocal feedback between matrix and cells induces expression of mechanosensitive integrins that drive fibroblast activation and increase scar size. Cilengitide, an inhibitor of specific integrins, rescues the phenotype of increased post-injury scarring in collagen-V-deficient mice. These observations demonstrate that collagen V regulates scar size in an integrin-dependent manner.


Assuntos
Cicatriz/metabolismo , Colágeno Tipo V/deficiência , Colágeno Tipo V/metabolismo , Traumatismos Cardíacos/metabolismo , Contração Miocárdica/genética , Miofibroblastos/metabolismo , Animais , Cicatriz/genética , Cicatriz/fisiopatologia , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Colágeno Tipo V/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Fibrose/genética , Fibrose/metabolismo , Regulação da Expressão Gênica/genética , Integrinas/antagonistas & inibidores , Integrinas/genética , Integrinas/metabolismo , Isoproterenol/farmacologia , Masculino , Mecanotransdução Celular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Força Atômica/instrumentação , Microscopia Eletrônica de Transmissão , Contração Miocárdica/efeitos dos fármacos , Miofibroblastos/citologia , Miofibroblastos/patologia , Miofibroblastos/ultraestrutura , Análise de Componente Principal , Proteômica , RNA-Seq , Análise de Célula Única
15.
Exp Eye Res ; 198: 108137, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32663498

RESUMO

No other tissue in the body depends more on the composition and organization of the extracellular matrix (ECM) for normal structure and function than the corneal stroma. The precise arrangement and orientation of collagen fibrils, lamellae and keratocytes that occurs during development and is needed in adults to maintain stromal function is dependent on the regulated interaction of multiple ECM components that contribute to attain the unique properties of the cornea: transparency, shape, mechanical strength, and avascularity. This review summarizes the contribution of different ECM components, their structure, regulation and function in modulating the properties of the corneal stroma. Fibril forming collagens (I, III, V), fibril associated collagens with interrupted triple helices (XII and XIV), network forming collagens (IV, VI and VIII) as well as small leucine-rich proteoglycans (SLRP) expressed in the stroma: decorin, biglycan, lumican, keratocan, and fibromodulin are some of the ECM components reviewed in this manuscript. There are spatial and temporal differences in the expression of these ECM components, as well as interactions among them that contribute to stromal function. Unique regions within the stroma like Bowman's layer and Descemet's layer are discussed. To define the complexity of corneal stroma composition and structure as well as the relationship to function is a daunting task. Our knowledge is expanding, and we expect that this review provides a comprehensive overview of current knowledge, definition of gaps and suggests future research directions.


Assuntos
Colágeno/metabolismo , Substância Própria/citologia , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Animais , Substância Própria/metabolismo , Humanos
16.
Invest Ophthalmol Vis Sci ; 61(5): 61, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32462201

RESUMO

Purpose: The aim of this study was to determine the roles of collagen XII in the regulation of stromal hierarchical organization, keratocyte organization, and corneal mechanics. Methods: The temporal and spatial expression of collagen XII at postnatal days 4, 10, 30, 90, and 150 were evaluated in wild-type (WT) mice. The role of collagen XII in hierarchical organization was analyzed by measuring fibril diameter and density, as well as stromal lamellar structure, within ultrastructural micrographs obtained from WT and collagen XII-deficient mice (Col12a1-/-). Keratocyte morphology and networks were assessed using actin staining with phalloidin and in vivo confocal microscopy. The effects of collagen XII on corneal biomechanics were evaluated with atomic force microscopy. Results: Collagen XII was localized homogeneously in the stroma from postnatal day 4 to day 150, and protein accumulation was shown to increase during this period using semiquantitative immunoblots. Higher fibril density (P < 0.001) and disruption of lamellar organization were found in the collagen XII null mice stroma when compared to WT mice. Keratocyte networks and organization were altered in the absence of collagen XII, as demonstrated using fluorescent microscopy after phalloidin staining and in vivo confocal microscopy. Corneal stiffness was increased in the absence of collagen XII. Young's modulus was 16.2 ± 5.6 kPa in WT and 32.8 ± 6.4 kPa in Col12a1-/- corneas. The difference between these two groups was significant (P < 0.001, t-test). Conclusions: Collagen XII plays a major role in establishing and maintaining stromal structure and function. In the absence of collagen XII, the corneal stroma showed significant abnormalities, including decreased interfibrillar space, disrupted lamellar organization, abnormal keratocyte organization, and increased corneal stiffness.


Assuntos
Colágeno Tipo XII/fisiologia , Substância Própria/anatomia & histologia , Substância Própria/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Colágeno Tipo XII/biossíntese , Ceratócitos da Córnea/fisiologia , Masculino , Camundongos
17.
Anat Rec (Hoboken) ; 303(6): 1717-1726, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32243086

RESUMO

The purpose of this study is to identify and characterize interactions of corneal endothelial cells with the posterior stroma. Corneal endothelial-stromal interactions were examined in developing postnatal day 3 (P3) and mature postnatal day 30 (P30) C57BL/6 mice and adult human corneas. Flat mounts and cross-sections were studied using immunofluorescence microscopy. F-actin was labeled with phalloidin to evaluate cell processes traversing Descemet's membrane (DM). Dynamic cell-cell communication was evaluated with fluorescence recovery after photobleaching (FRAP) using calcein acetoxymethyl dye. Endothelial-stromal interactions were observed across the whole cornea transversing DM during early postnatal development (P3), while these interactions became restricted to the periphery in the mature murine cornea (P30). In adult human corneas, endothelial extensions through the DM were observed in the peripheral cornea. The pattern of FRAP in both mature mice and human central corneas demonstrated endothelial-endothelial cell communication. In contrast, in the human cornea 2, distinct patterns were observed consistent with endothelial-endothelial and stromal-endothelial communication. Endothelial-stromal interactions were observed in the entire cornea during early postnatal mouse corneas. This evidence of endothelial-posterior stromal contact contradicts the hypothesis that corneal endothelial cells are isolated from the stroma by the DM and provides direct data to support endothelial-stromal comunication that may directly influence posterior corneal structure and function. Anat Rec, 2020. © 2020 American Association for Anatomy.


Assuntos
Comunicação Celular/fisiologia , Substância Própria/citologia , Células Endoteliais/citologia , Idoso , Animais , Substância Própria/metabolismo , Células Endoteliais/metabolismo , Humanos , Camundongos , Pessoa de Meia-Idade
18.
Arthritis Rheumatol ; 72(8): 1266-1277, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32162789

RESUMO

OBJECTIVE: To elucidate the role of decorin, a small leucine-rich proteoglycan, in the degradation of cartilage matrix during the progression of post-traumatic osteoarthritis (OA). METHODS: Three-month-old decorin-null (Dcn-/- ) and inducible decorin-knockout (Dcni KO ) mice were subjected to surgical destabilization of the medial meniscus (DMM) to induce post-traumatic OA. The OA phenotype that resulted was evaluated by assessing joint morphology and sulfated glycosaminoglycan (sGAG) staining via histological analysis (n = 6 mice per group), surface collagen fibril nanostructure via scanning electron microscopy (n = 4 mice per group), tissue modulus via atomic force microscopy-nanoindentation (n = 5 or more mice per group) and subchondral bone structure via micro-computed tomography (n = 5 mice per group). Femoral head cartilage explants from wild-type and Dcn-/- mice were stimulated with the inflammatory cytokine interleukin-1ß (IL-1ß) in vitro (n = 6 mice per group). The resulting chondrocyte response to IL-1ß and release of sGAGs were quantified. RESULTS: In both Dcn-/- and Dcni KO mice, the absence of decorin resulted in accelerated sGAG loss and formation of highly aligned collagen fibrils on the cartilage surface relative to the control (P < 0.05). Also, Dcn-/- mice developed more salient osteophytes, illustrating more severe OA. In cartilage explants treated with IL-1ß, loss of decorin did not alter the expression of either anabolic or catabolic genes. However, a greater proportion of sGAGs was released to the media from Dcn-/- mouse explants, in both live and devitalized conditions (P < 0.05). CONCLUSION: In post-traumatic OA, decorin delays the loss of fragmented aggrecan and fibrillation of cartilage surface, and thus, plays a protective role in ameliorating cartilage degeneration.


Assuntos
Cartilagem Articular/metabolismo , Decorina/metabolismo , Osteoartrite/metabolismo , Agrecanas/metabolismo , Animais , Condrócitos/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Glicosaminoglicanos/metabolismo , Interleucina-1beta/metabolismo , Proteínas Matrilinas/metabolismo , Meniscos Tibiais/metabolismo , Camundongos , Camundongos Knockout , Osteoartrite/etiologia , Osteófito/metabolismo , Ferimentos e Lesões/complicações
19.
Mol Vis ; 25: 415-426, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31523119

RESUMO

Purpose: Maintenance of a transparent corneal stroma is imperative for proper vision. The corneal stroma is composed of primarily collagen fibrils, small leucine-rich proteoglycans (SLRPs), as well as sparsely distributed cells called keratocytes. The lattice arrangement and spacing of the collagen fibrils that allows for transparency may be disrupted due to genetic mutations and injuries. The purpose of this study is to examine the therapeutic efficacy of human umbilical cord mesenchymal stem/stromal cells (UMSCs) in treating congenital and acquired corneal opacity associated with the loss of collagen V. Methods: Experimental mice, i.e., wild-type, Col5a1f/f and Kera-Cre/Col5a1f/f (Col5a1∆st/∆st , collagen V null in the corneal stroma) mice in a C57BL/6J genetic background, were subjected to a lamellar keratectomy, and treated with or without UMSC (104 cells/cornea) transplantation via an intrastromal injection or a fibrin plug. In vivo Heidelberg retinal tomograph (HRT II) confocal microscopy, second harmonic generated (SHG) confocal microscopy, histology, and immunofluorescence microscopy were used to assess the corneal transparency of the regenerated corneas. Results: Col5a1∆st/∆st mice display a cloudy cornea phenotype that is ameliorated following intrastromal transplantation of UMSCs. Loss of collagen V in Col5a1∆st/∆st corneas augments the formation of cornea scarring following the keratectomy. UMSC transplantation with a fibrin plug improves the healing of injured corneas and regeneration of transparent corneas, as determined with in vivo HRT II confocal microscopy. Second harmonic confocal microscopy revealed the improved collagen fibril lamellar architecture in the UMSC-transplanted cornea in comparison to the control keratectomized corneas. Conclusions: UMSC transplantation was successful in recovering some corneal transparency in injured corneas of wild-type, Col5a1f/f and Col5a1∆st/∆st mice. The production of collagen V by transplanted UMSCs may account for the regeneration of corneal transparency, as exemplified by better collagen fiber organization, as revealed with SHG signals.


Assuntos
Opacidade da Córnea/congênito , Opacidade da Córnea/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Colágeno Tipo V/metabolismo , Opacidade da Córnea/patologia , Substância Própria/patologia , Colágenos Fibrilares/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Resultado do Tratamento , Cordão Umbilical/citologia
20.
ACS Nano ; 13(10): 11320-11333, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31550133

RESUMO

Joint biomechanical functions rely on the integrity of cartilage extracellular matrix. Understanding the molecular activities that govern cartilage matrix assembly is critical for developing effective cartilage regeneration strategies. This study elucidated the role of decorin, a small leucine-rich proteoglycan, in the structure and biomechanical functions of cartilage. In decorin-null cartilage, we discovered a substantial reduction of aggrecan content, the major proteoglycan of cartilage matrix, and mild changes in collagen fibril nanostructure. This loss of aggrecan resulted in significantly impaired biomechanical properties of cartilage, including decreased modulus, elevated hydraulic permeability, and reduced energy dissipation capabilities. At the cellular level, we found that decorin functions to increase the retention of aggrecan in the neo-matrix of chondrocytes, rather than to directly influence the biosynthesis of aggrecan. At the molecular level, we demonstrated that decorin significantly increases the adhesion between aggrecan and aggrecan molecules and between aggrecan molecules and collagen II fibrils. We hypothesize that decorin plays a crucial structural role in mediating the matrix integrity and biomechanical functions of cartilage by providing physical linkages to increase the adhesion and assembly of aggrecan molecules at the nanoscale.


Assuntos
Agrecanas/química , Decorina/química , Matriz Extracelular/química , Cartilagem Articular/química , Nanoestruturas/química , Proteoglicanas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA