Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 12610, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32699291

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Sustainability ; 12(6): 2323, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32499923

RESUMO

Food systems contribute to up to 37% of global greenhouse gas emissions, and emissions are increasing. Since the emissions vary greatly between different foods, citizens' choices can make a big difference to climate change. Public engagement events are opportunities to communicate these complex issues: to raise awareness about the impact of citizens' own food choices on climate change and to generate support for changes in all food system activities, the food environment and food policy. This article summarises findings from our 'Take a Bite Out of Climate Change' stand at two UK outreach activities during July 2019. We collected engagement information in three main ways: (1) individuals were invited to complete a qualitative evaluation questionnaire comprising of four questions that gauged the person's interests, perceptions of food choices and attitudes towards climate change; (2) an online multiple-choice questionnaire asking about eating habits and awareness/concerns; and (3) a token drop voting activity where visitors answered the question: 'Do you consider greenhouse gases when choosing food?' Our results indicate whether or not people learnt about the environmental impacts of food (effectiveness), how likely they are to move towards a more climate-friendly diet (behavioural change), and how to gather information more effectively at this type of event.

3.
Sci Rep ; 9(1): 18030, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792257

RESUMO

Soil organic carbon (SOC) dynamics represent a persisting uncertainty in our understanding of the global carbon cycle. SOC storage is strongly linked to plant inputs via the formation of soil organic matter, but soil geochemistry also plays a critical role. In tropical soils with rapid SOC turnover, the association of organic matter with soil minerals is particularly important for stabilising SOC but projected increases in tropical forest productivity could trigger feedbacks that stimulate the release of stored SOC. Here, we demonstrate limited additional SOC storage after 13-15 years of experimentally doubled aboveground litter inputs in a lowland tropical forest. We combined biological, physical, and chemical methods to characterise SOC along a gradient of bioavailability. After 13 years of monthly litter addition treatments, most of the additional SOC was readily bioavailable and we observed no increase in mineral-associated SOC. Importantly, SOC with weak association to soil minerals declined in response to long-term litter addition, suggesting that increased plant inputs could modify the formation of organo-mineral complexes in tropical soils. Hence, we demonstrate the limited capacity of tropical soils to sequester additional C inputs and provide insights into potential underlying mechanisms.

4.
Ecol Evol ; 8(7): 3787-3796, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29686858

RESUMO

Global change is affecting primary productivity in forests worldwide, and this, in turn, will alter long-term carbon (C) sequestration in wooded ecosystems. On one hand, increased primary productivity, for example, in response to elevated atmospheric carbon dioxide (CO 2), can result in greater inputs of organic matter to the soil, which could increase C sequestration belowground. On other hand, many of the interactions between plants and microorganisms that determine soil C dynamics are poorly characterized, and additional inputs of plant material, such as leaf litter, can result in the mineralization of soil organic matter, and the release of soil C as CO 2 during so-called "priming effects". Until now, very few studies made direct comparison of changes in soil C dynamics in response to altered plant inputs in different wooded ecosystems. We addressed this with a cross-continental study with litter removal and addition treatments in a temperate woodland (Wytham Woods) and lowland tropical forest (Gigante forest) to compare the consequences of increased litterfall on soil respiration in two distinct wooded ecosystems. Mean soil respiration was almost twice as high at Gigante (5.0 µmol CO 2 m-2 s-1) than at Wytham (2.7 µmol CO 2 m-2 s-1) but surprisingly, litter manipulation treatments had a greater and more immediate effect on soil respiration at Wytham. We measured a 30% increase in soil respiration in response to litter addition treatments at Wytham, compared to a 10% increase at Gigante. Importantly, despite higher soil respiration rates at Gigante, priming effects were stronger and more consistent at Wytham. Our results suggest that in situ priming effects in wooded ecosystems track seasonality in litterfall and soil respiration but the amount of soil C released by priming is not proportional to rates of soil respiration. Instead, priming effects may be promoted by larger inputs of organic matter combined with slower turnover rates.

5.
Methods Ecol Evol ; 8(9): 1042-1050, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28989596

RESUMO

Root exudation is a key component of nutrient and carbon dynamics in terrestrial ecosystems. Exudation rates vary widely by plant species and environmental conditions, but our understanding of how root exudates affect soil functioning is incomplete, in part because there are few viable methods to manipulate root exudates in situ. To address this, we devised the Automated Root Exudate System (ARES), which simulates increased root exudation by applying small amounts of labile solutes at regular intervals in the field.The ARES is a gravity-fed drip irrigation system comprising a reservoir bottle connected via a timer to a micro-hose irrigation grid covering c. 1 m2; 24 drip-tips are inserted into the soil to 4-cm depth to apply solutions into the rooting zone. We installed two ARES subplots within existing litter removal and control plots in a temperate deciduous woodland. We applied either an artificial root exudate solution (RE) or a procedural control solution (CP) to each subplot for 1 min day-1 during two growing seasons. To investigate the influence of root exudation on soil carbon dynamics, we measured soil respiration monthly and soil microbial biomass at the end of each growing season.The ARES applied the solutions at a rate of c. 2 L m-2 week-1 without significantly increasing soil water content. The application of RE solution had a clear effect on soil carbon dynamics, but the response varied by litter treatment. Across two growing seasons, soil respiration was 25% higher in RE compared to CP subplots in the litter removal treatment, but not in the control plots. By contrast, we observed a significant increase in microbial biomass carbon (33%) and nitrogen (26%) in RE subplots in the control litter treatment.The ARES is an effective, low-cost method to apply experimental solutions directly into the rooting zone in the field. The installation of the systems entails minimal disturbance to the soil and little maintenance is required. Although we used ARES to apply root exudate solution, the method can be used to apply many other treatments involving solute inputs at regular intervals in a wide range of ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA