Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Eur Radiol ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724764

RESUMO

OBJECTIVES: To conduct an intrapatient comparison of ultra-low-dose computed tomography (ULDCT) and standard-of-care-dose CT (SDCT) of the chest in terms of the diagnostic accuracy of ULDCT and intrareader agreement in patients with post-COVID conditions. METHODS: We prospectively included 153 consecutive patients with post-COVID-19 conditions. All participants received an SDCT and an additional ULDCT scan of the chest. SDCTs were performed with standard imaging parameters and ULDCTs at a fixed tube voltage of 100 kVp (with tin filtration), 50 ref. mAs (dose modulation active), and iterative reconstruction algorithm level 5 of 5. All CT scans were separately evaluated by four radiologists for the presence of lung changes and their consistency with post-COVID lung abnormalities. Radiation dose parameters and the sensitivity, specificity, and accuracy of ULDCT were calculated. RESULTS: Of the 153 included patients (mean age 47.4 ± 15.3 years; 48.4% women), 45 (29.4%) showed post-COVID lung abnormalities. In those 45 patients, the most frequently detected CT patterns were ground-glass opacities (100.0%), reticulations (43.5%), and parenchymal bands (37.0%). The accuracy, sensitivity, and specificity of ULDCT compared to SDCT for the detection of post-COVID lung abnormalities were 92.6, 87.2, and 94.9%, respectively. The median total dose length product (DLP) of ULDCTs was less than one-tenth of the radiation dose of our SDCTs (12.6 mGy*cm [9.9; 15.5] vs. 132.1 mGy*cm [103.9; 160.2]; p < 0.001). CONCLUSION: ULDCT of the chest offers high accuracy in the detection of post-COVID lung abnormalities compared to an SDCT scan at less than one-tenth the radiation dose, corresponding to only twice the dose of a standard chest radiograph in two views. CLINICAL RELEVANCE STATEMENT: Ultra-low-dose CT of the chest may provide a favorable, radiation-saving alternative to standard-dose CT in the long-term follow-up of the large patient cohort of post-COVID-19 patients.

2.
Z Med Phys ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599955

RESUMO

Intensity-based 2D/3D registration using kilo-voltage (kV) and mega-voltage (MV) on-board imaging is a promising approach for real-time tumor motion tracking. So far, the performance of the kV images as well as kV-MV image pairs for 2D/3D registration using only one gantry angle (in anterior-posterior (AP) direction) has been investigated on patient data. In stereotactic body radiation therapy (SBRT), however, various gantry angles are typically used. This study attempts to answer the question of whether automatic 2D/3D registration is possible using kV images as well as kV-MV image pairs for gantry angles other than the AP direction. We also investigated the effect of additional portal MV images paired with kV images to improve 2D/3D registration in extracting cranio-caudal (CC) and AP displacement at arbitrary gantry angles and different fractions. The kV and MV image sequences as well as 3D volume data from five patients suffering from non-small cell lung cancer undergoing SBRT were used. Diaphragm motion served as the reference signal. The CC and AP displacements resulting from the registration results were compared with the corresponding reference motion signal. Pearson correlation coefficients (R value) was used to calculate the similarity measure between reference signal and the extracted displacements resulting from the registration. Signals we found that using 2D/3D registration tumor motion in 5 degrees of freedom (DOF) with kV images and in 6 degrees of freedom with kV-MV image pairs can be extracted for most gantry angles in all patients. Furthermore, our results have shown that the use of kV-MV image pairs increases the overall chance of tumor visibility and therefore leads to more successful extraction of CC as well as AP displacements for almost all gantry angles in all patients. We observed an improvement in registration of at least 0.29% more gantry angle for all patients when we used kV-MV images compared to kV images alone. In addition, an improvement in the R-value was observed in up to 16 fractions in various patients.

3.
Brain Stimul ; 17(3): 510-524, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677543

RESUMO

BACKGROUND: Electrical stimulation of the vagus nerve (VN) is a therapy for epilepsy, obesity, depression, and heart diseases. However, whole nerve stimulation leads to side effects. We examined the neuroanatomy of the mid-cervical segment of the human VN and its superior cardiac branch to gain insight into the side effects of VN stimulation and aid in developing targeted stimulation strategies. METHODS: Nerve specimens were harvested from eight human body donors, then subjected to immunofluorescence and semiautomated quantification to determine the signature, quantity, and spatial distribution of different axonal categories. RESULTS: The right and left cervical VN (cVN) contained a total of 25,489 ± 2781 and 23,286 ± 3164 fibers, respectively. Two-thirds of the fibers were unmyelinated and one-third were myelinated. About three-quarters of the fibers in the right and left cVN were sensory (73.9 ± 7.5 % versus 72.4 ± 5.6 %), while 13.2 ± 1.8 % versus 13.3 ± 3.0 % were special visceromotor and parasympathetic, and 13 ± 5.9 % versus 14.3 ± 4.0 % were sympathetic. Special visceromotor and parasympathetic fibers formed clusters. The superior cardiac branches comprised parasympathetic, vagal sensory, and sympathetic fibers with the left cardiac branch containing more sympathetic fibers than the right (62.7 ± 5.4 % versus 19.8 ± 13.3 %), and 50 % of the left branch contained sensory and sympathetic fibers only. CONCLUSION: The study indicates that selective stimulation of vagal sensory and motor fibers is possible. However, it also highlights the potential risk of activating sympathetic fibers in the superior cardiac branch, especially on the left side.

4.
EClinicalMedicine ; 65: 102267, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37876998

RESUMO

Background: Ultra-low-dose CT (ULDCT) examinations of the chest at only twice the radiation dose of a chest X-ray (CXR) now offer a valuable imaging alternative to CXR. This trial prospectively compares ULDCT and CXR for the detection rate of diagnoses and their clinical relevance in a low-prevalence cohort of non-traumatic emergency department patients. Methods: In this prospective crossover cohort trial, 294 non-traumatic emergency department patients with a clinically indicated CXR were included between May 2nd and November 26th of 2019 (www.clinicaltrials.gov: NCT03922516). All participants received both CXR and ULDCT, and were randomized into two arms with inverse reporting order. The detection rate of CXR was calculated from 'arm CXR' (n = 147; CXR first), and of ULDCT from 'arm ULDCT' (n = 147; ULDCT first). Additional information reported by the second exam in each arm was documented. From all available clinical and imaging data, expert radiologists and emergency physicians built a compound reference standard, including radiologically undetectable diagnoses, and assigned each finding to one of five clinical relevance categories for the respective patient. Findings: Detection rates for main diagnoses by CXR and ULDCT (mean effective dose: 0.22 mSv) were 9.1% (CI [5.2, 15.5]; 11/121) and 20.1% (CI [14.2, 27.7]; 27/134; P = 0.016), respectively. As an additional imaging modality, ULDCT added 9.1% (CI [5.2, 15.5]; 11/121) of main diagnoses to prior CXRs, whereas CXRs did not add a single main diagnosis (0/134; P < 0.001). Notably, ULDCT also offered higher detection rates than CXR for all other clinical relevance categories, including findings clinically irrelevant for the respective emergency department visit with 78.5% (CI [74.0, 82.5]; 278/354) vs. 16.2% (CI [12.7, 20.3]; 58/359) as a primary modality and 68.2% (CI [63.3, 72.8]; 245/359) vs. 2.5% (CI [1.3, 4.7]; 9/354) as an additional imaging modality. Interpretation: In non-traumatic emergency department patients, ULDCT of the chest offered more than twice the detection rate for main diagnoses compared to CXR. Funding: The Department of Biomedical Imaging and Image-guided Therapy of Medical University of Vienna received funding from Siemens Healthineers (Erlangen, Germany) to employ two research assistants for one year.

5.
Z Med Phys ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37380561

RESUMO

Recently, 3D printing has been widely used to fabricate medical imaging phantoms. So far, various rigid 3D printable materials have been investigated for their radiological properties and efficiency in imaging phantom fabrication. However, flexible, soft tissue materials are also needed for imaging phantoms for simulating several clinical scenarios where anatomical deformations is important. Recently, various additive manufacturing technologies have been used to produce anatomical models based on extrusion techniques that allow the fabrication of soft tissue materials. To date, there is no systematic study in the literature investigating the radiological properties of silicone rubber materials/fluids for imaging phantoms fabricated directly by extrusion using 3D printing techniques. The aim of this study was to investigate the radiological properties of 3D printed phantoms made of silicone in CT imaging. To achieve this goal, the radiodensity as described as Hounsfield Units (HUs) of several samples composed of three different silicone printing materials were evaluated by changing the infill density to adjust their radiological properties. A comparison of HU values with a Gammex Tissue Characterization Phantom was performed. In addition, a reproducibility analysis was performed by creating several replicas for specific infill densities. A scaled down anatomical model derived from an abdominal CT was also fabricated and the resulting HU values were evaluated. For the three different silicone materials, a spectrum ranging from -639 to +780 HU was obtained on CT at a scan setting of 120 kVp. In addition, using different infill densities, the printed materials were able to achieve a similar radiodensity range as obtained in different tissue-equivalent inserts in the Gammex phantom (238 HU to -673 HU). The reproducibility results showed good agreement between the HU values of the replicas compared to the original samples, confirming the reproducibility of the printed materials. A good agreement was observed between the HU target values in abdominal CT and the HU values of the 3D-printed anatomical phantom in all tissues.

6.
Z Med Phys ; 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36973106

RESUMO

Precise instrument placement plays a critical role in all interventional procedures, especially percutaneous procedures such as needle biopsies, to achieve successful tumor targeting and increased diagnostic accuracy. C-arm cone beam computed tomography (CBCT) has the potential to precisely visualize the anatomy in direct vicinity of the needle and evaluate the adequacy of needle placement during the intervention, allowing for instantaneous adjustment in case of misplacement. However, even with the most advanced C-arm CBCT devices, it can be difficult to identify the exact needle position on CBCT images due to the strong metal artifacts around the needle. In this study, we proposed a framework for customized trajectory design in CBCT imaging based on Prior Image Constrained Compressed Sensing (PICCS) reconstruction with the goal of reducing metal artifacts in needle-based procedures. We proposed to optimize out-of-plane rotations in three-dimensional (3D) space and minimize projection views while reducing metal artifacts at specific volume of interests (VOIs). An anthropomorphic thorax phantom with a needle inserted inside and two tumor models as the imaging targets were used to validate the proposed approach. The performance of the proposed approach was also evaluated for CBCT imaging under kinematic constraints by simulating some collision areas on the geometry of the C-arm. We compared the result of optimized 3D trajectories using the PICCS algorithm and 20 projections with the result of a circular trajectory with sparse view using PICCS and Feldkamp, Davis, and Kress (FDK), both using 20 projections, and the circular FDK method with 313 projections. For imaging targets 1 and 2, the highest values of structural similarity index measure (SSIM) and universal quality index (UQI) between the reconstructed image from the optimized trajectories and the initial CBCT image at the VOI was calculated 0.7521, 0.7308 and 0.7308, 0.7248 respectively. These results significantly outperformed the FDK method (with 20 and 313 projections) and the PICCS method (20 projections) both using the circular trajectory. Our results showed that the proposed optimized trajectories not only significantly reduce metal artifacts but also suggest a dose reduction for needle-based CBCT interventions, considering the small number of projections used. Furthermore, our results showed that the optimized trajectories are compatible with spatially constrained situations and enable CBCT imaging under kinematic constraints when the standard circular trajectory is not feasible.

7.
Phys Med ; 105: 102512, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36584415

RESUMO

Medical imaging phantoms are widely used for validation and verification of imaging systems and algorithms in surgical guidance and radiation oncology procedures. Especially, for the performance evaluation of new algorithms in the field of medical imaging, manufactured phantoms need to replicate specific properties of the human body, e.g., tissue morphology and radiological properties. Additive manufacturing (AM) technology provides an inexpensive opportunity for accurate anatomical replication with customization capabilities. In this study, we proposed a simple and cheap protocol using Fused Deposition Modeling (FDM) technology to manufacture realistic tumor phantoms based on the filament 3D printing technology. Tumor phantoms with both homogenous and heterogeneous radiodensity were fabricated. The radiodensity similarity between the printed tumor models and real tumor data from CT images of lung cancer patients was evaluated. Additionally, it was investigated whether a heterogeneity in the 3D printed tumor phantoms as observed in the tumor patient data had an influence on the validation of image registration algorithms. A radiodensity range between -217 to 226 HUs was achieved for 3D printed phantoms using different filament materials; this range of radiation attenuation is also observed in the human lung tumor tissue. The resulted HU range could serve as a lookup-table for researchers and phantom manufactures to create realistic CT tumor phantoms with the desired range of radiodensities. The 3D printed tumor phantoms also precisely replicated real lung tumor patient data regarding morphology and could also include life-like heterogeneity of the radiodensity inside the tumor models. An influence of the heterogeneity on accuracy and robustness of the image registration algorithms was not found.


Assuntos
Neoplasias Pulmonares , Impressão Tridimensional , Humanos , Imagens de Fantasmas , Neoplasias Pulmonares/diagnóstico por imagem , Algoritmos , Tomografia Computadorizada por Raios X/métodos
8.
Z Med Phys ; 33(2): 168-181, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35792011

RESUMO

OBJECTIVES: To develop and validate a simple approach for building cost-effective imaging phantoms for Cone Beam Computed Tomography (CBCT) using a modified Polyjet additive manufacturing technology where a single material can mimic a range of human soft-tissue radiation attenuation. MATERIALS AND METHODS: Single material test phantoms using a cubic lattice were designed in 3-Matic 15.0 software . Keeping the individual cubic lattice volume constant, eight different percentage ratio (R) of air: material from 0% to 70% with a 10% increment were assigned to each sample. The phantoms were printed in three materials, namely Vero PureWhite, VeroClear and TangoPlus using Polyjet technology. The CT value analysis, non-contact profile measurement and microCT-based volumetric analysis was performed for all the samples. RESULTS: The printed test phantoms produced a grey value spectrum equivalent to the radiation attenuation of human soft tissues in the range of -757 to +286 HU on CT. The results from dimensional comparison analysis of the printed phantoms with the digital test phantoms using non-contact profile measurement showed a mean accuracy of 99.07 % and that of micro-CT volumetric analysis showed mean volumetric accuracy of 84.80-94.91%. The material and printing costs of developing 24 test phantoms was 83.00 Euro. CONCLUSIONS: The study shows that additive manufacturing-guided macrostructure manipulation modifies successfully the radiographic visibility of a material in CBCT imaging with 1 mm3 resolution, helping customization of imaging phantoms.


Assuntos
Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Imagens de Fantasmas , Impressão Tridimensional , Tecnologia , Software
9.
Z Med Phys ; 33(4): 552-566, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36195519

RESUMO

Proton irradiation is a well-established method to treat deep-seated tumors in radio oncology. Usually, an X-ray computed tomography (CT) scan is used for treatment planning. Since proton therapy is based on the precise knowledge of the stopping power describing the energy loss of protons in the patient tissues, the Hounsfield units of the planning CT have to be converted. This conversion introduces range errors in the treatment plan, which could be reduced, if the stopping power values were extracted directly from an image obtained using protons instead of X-rays. Since protons are affected by multiple Coulomb scattering, reconstruction of the 3D stopping power map results in limited image quality if the curved proton path is not considered. This work presents a substantial code extension of the open-source toolbox TIGRE for proton CT (pCT) image reconstruction based on proton radiographs including a curved proton path estimate. The code extension and the reconstruction algorithms are GPU-based, allowing to achieve reconstruction results within minutes. The performance of the pCT code extension was tested with Monte Carlo simulated data using three phantoms (Catphan® high resolution and sensitometry modules and a CIRS patient phantom). In the simulations, ideal and non-ideal conditions for a pCT setup were assumed. The obtained mean absolute percentage error was found to be below 1% and up to 8 lp/cm could be resolved using an idealized setup. These findings demonstrate that the presented code extension to the TIGRE toolbox offers the possibility for other research groups to use a fast and accurate open-source pCT reconstruction.


Assuntos
Terapia com Prótons , Prótons , Humanos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Radiografia , Imagens de Fantasmas , Método de Monte Carlo , Algoritmos
10.
Z Med Phys ; 32(4): 438-452, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35221154

RESUMO

Current medical imaging phantoms are usually limited by simplified geometry and radiographic skeletal homogeneity, which confines their usage for image quality assessment. In order to fabricate realistic imaging phantoms, replication of the entire tissue morphology and the associated CT numbers, defined as Hounsfield Unit (HU) is required. 3D printing is a promising technology for the production of medical imaging phantoms with accurate anatomical replication. So far, the majority of the imaging phantoms using 3D printing technologies tried to mimic the average HU of soft tissue human organs. One important aspect of the anthropomorphic imaging phantoms is also the replication of realistic radiodensities for bone tissues. In this study, we used filament printing technology to develop a CT-derived 3D printed thorax phantom with realistic bone-equivalent radiodensity using only one single commercially available filament. The generated thorax phantom geometry closely resembles a patient and includes direct manufacturing of bone structures while creating life-like heterogeneity within bone tissues. A HU analysis as well as a physical dimensional comparison were performed in order to evaluate the density and geometry agreement between the proposed phantom and the corresponding CT data. With the achieved density range (-482 to 968 HU) we could successfully mimic the realistic radiodensity of the bone marrow as well as the cortical bone for the ribs, vertebral body and dorsal vertebral column in the thorax skeleton. In addition, considering the large radiodensity range achieved a full thorax imaging phantom mimicking also soft tissues can become feasible. The physical dimensional comparison using both Extrema Analysis and Collision Detection methods confirmed a mean surface overlap of 90% and a mean volumetric overlap of 84,56% between the patient and phantom model. Furthermore, the reproducibility analyses revealed a good geometry and radiodensity duplicability in 24 printed cylinder replicas. Thus, according to our results, the proposed additively manufactured anthropomorphic thorax phantom has the potential to be efficiently used for validation of imaging- and radiation-based procedures in precision medicine.


Assuntos
Tórax , Tomografia Computadorizada por Raios X , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos , Impressão Tridimensional , Osso e Ossos/diagnóstico por imagem
11.
Med Phys ; 49(4): 2366-2372, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35224747

RESUMO

BACKGROUND: MR-based methods for attenuation correction (AC) in PET/MRI either neglect attenuation of bone, or use MR-signal derived information about bone, which leads to a bias in quantification of tracer uptake in PET. In a previous study, we presented a PET/MRI specific MR coil with an integrated transmission source (TX) system allowing for direct measurement of attenuation. In phantom measurements, this system successfully reproduced the linear attenuation coefficient of water. PURPOSE: The purpose of this study is to validate the TX system in a clinical setting using animals and to show its applicability compared to standard clinical methods. METHODS: As test subject, a 15-kg piglet was injected with 53 MBq of 18F-NaF. The µ-map obtained with the TX system and the reconstructed activity distribution were compared to four established AC methods: a Dixon sequence, an ultra-short echo time (UTE) sequence, a CT scan, and a 511 keV transmission scan using a Siemens ECAT EXACT HR+ as the reference. The PET/MRI measurements were performed on a Siemens Biograph mMR to obtain the µ-map using the TX system as well as the Dixon and UTE sequence directly followed by the CT and ECAT measurements. RESULTS: The reconstructed activity distribution using the TX system for AC showed similar results compared to the reference (<5% difference in hot regions) and outperformed the MR-based methods as implemented in the PET/MRI system (<10% difference in hot regions). However, the additional hardware of the TX system adds complexity to the acquisition process. CONCLUSION: Our porcine study demonstrates the feasibility of post-injection transmission scans using the developed TX system in a clinical setting. This makes it a useful tool for PET/MRI in cases where transmission information is needed for AC. Potential applications are studies using larger animals where state-of-the-art atlas-based or artificial intelligence AC methods are not available.


Assuntos
Inteligência Artificial , Imagem Multimodal , Animais , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Suínos
12.
Phys Med ; 84: 56-64, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33848784

RESUMO

In proton therapy, the knowledge of the proton stopping power, i.e. the energy deposition per unit length within human tissue, is essential for accurate treatment planning. One suitable method to directly measure the stopping power is proton computed tomography (pCT). Due to the proton interaction mechanisms in matter, pCT image reconstruction faces some challenges: the unique path of each proton has to be considered separately in the reconstruction process adding complexity to the reconstruction problem. This study shows that the GPU-based open-source software toolkit TIGRE, which was initially intended for X-ray CT reconstruction, can be applied to the pCT image reconstruction problem using a straight line approach for the proton path. This simplified approach allows for reconstructions within seconds. To validate the applicability of TIGRE to pCT, several Monte Carlo simulations modeling a pCT setup with two Catphan® modules as phantoms were performed. Ordered-Subset Simultaneous Algebraic Reconstruction Technique (OS-SART) and Adaptive-Steepest-Descent Projection Onto Convex Sets (ASD-POCS) were used for image reconstruction. Since the accuracy of the approach is limited by the straight line approximation of the proton path, requirements for further improvement of TIGRE for pCT are addressed.


Assuntos
Algoritmos , Prótons , Humanos , Processamento de Imagem Assistida por Computador , Método de Monte Carlo , Imagens de Fantasmas , Software , Tomografia Computadorizada por Raios X
13.
PLoS One ; 16(2): e0245508, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33561127

RESUMO

Cone beam computed tomography (CBCT) has become a vital tool in interventional radiology. Usually, a circular source-detector trajectory is used to acquire a three-dimensional (3D) image. Kinematic constraints due to the patient size or additional medical equipment often cause collisions with the imager while performing a full circular rotation. In a previous study, we developed a framework to design collision-free, patient-specific trajectories for the cases in which circular CBCT is not feasible. Our proposed trajectories included enough information to appropriately reconstruct a particular volume of interest (VOI), but the constraints had to be defined before the intervention. As most collisions are unpredictable, performing an on-the-fly trajectory optimization is desirable. In this study, we propose a search strategy that explores a set of trajectories that cover the whole collision-free area and subsequently performs a search locally in the areas with the highest image quality. Selecting the best trajectories is performed using simulations on a prior diagnostic CT volume which serves as a digital phantom for simulations. In our simulations, the Feature SIMilarity Index (FSIM) is used as the objective function to evaluate the imaging quality provided by different trajectories. We investigated the performance of our methods using three different anatomical targets inside the Alderson-Rando phantom. We used FSIM and Universal Quality Image (UQI) to evaluate the final reconstruction results. Our experiments showed that our proposed trajectories could achieve a comparable image quality in the VOI compared to the standard C-arm circular CBCT. We achieved a relative deviation less than 10% for both FSIM and UQI metrics between the reconstructed images from the optimized trajectories and the standard C-arm CBCT for all three targets. The whole trajectory optimization took approximately three to four minutes.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Tomografia Computadorizada de Feixe Cônico/instrumentação , Tomografia Computadorizada de Feixe Cônico/métodos , Humanos , Imagens de Fantasmas
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1299-1302, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018226

RESUMO

We proposed a target-based cone beam computed tomography (CBCT) imaging framework in order to optimize a free three dimensional (3D) source-detector trajectory by incorporating prior 3D image data. We aim to enable CBCT systems to provide topical information about a region of interest (ROI) using a short-scan trajectory with a reduced number of projections. The best projection views are selected by maximizing an objective function fed by the image quality by means of applying different x-ray positions on the digital phantom data. Finally, an optimized trajectory is selected which is applied to a C-arm device able to perform general source-detector positioning. An Alderson-Rando head phantom is used in order to investigate the performance of the proposed framework. Our experiments showed that the optimized trajectory could achieve a comparable image quality in the ROI with respect to the reference C-arm CBCT while using approximately one-quarter of projections. An angular range of 156° was used for the optimized trajectory.


Assuntos
Tomografia Computadorizada de Feixe Cônico Espiral , Tomografia Computadorizada de Feixe Cônico , Imageamento Tridimensional , Imagens de Fantasmas , Cintilografia
15.
Med Phys ; 47(10): 4786-4799, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32679623

RESUMO

PURPOSE: We developed a target-based cone beam computed tomography (CBCT) imaging framework for optimizing an unconstrained three dimensional (3D) source-detector trajectory by incorporating prior image information. Our main aim is to enable a CBCT system to provide topical information about the target using a limited angle noncircular scan orbit with a minimal number of projections. Such a customized trajectory should include enough information to sufficiently reconstruct a particular volume of interest (VOI) under kinematic constraints, which may result from the patient size or additional surgical or radiation therapy-related equipment. METHODS: A patient-specific model from a prior diagnostic computed tomography (CT) volume is used as a digital phantom for CBCT trajectory simulations. Selection of the best projection views is accomplished through maximizing an objective function fed by the imaging quality provided by different x-ray positions on the digital phantom data. The final optimized trajectory includes a limited angular range and a minimal number of projections which can be applied to a C-arm device capable of general source-detector positioning. The performance of the proposed framework is investigated in experiments involving an in-house-built box phantom including spherical targets as well as an Alderson-Rando head phantom. In order to quantify the image quality of the reconstructed image, we use the average full-width-half-maximum (FWHMavg ) for the spherical target and feature similarity index (FSIM), universal quality index (UQI), and contrast-to-noise ratio (CNR) for an anatomical target. RESULTS: Our experiments based on both the box and head phantom showed that optimized trajectories could achieve a comparable image quality in the VOI with respect to the standard C-arm circular CBCT while using approximately one quarter of projections. We achieved a relative deviation <7% for FWHMavg between the reconstructed images from the optimized trajectories and the standard C-arm CBCT for all spherical targets. Furthermore, for the anatomical target, the relative deviation of FSIM, UQI, and CNR between the reconstructed image related to the proposed trajectory and the standard C-arm circular CBCT was found to be 5.06%, 6.89%, and 8.64%, respectively. We also compared our proposed trajectories to circular trajectories with equivalent angular sampling as the optimized trajectories. Our results show that optimized trajectories can outperform simple partial circular trajectories in the VOI in term of image quality. Typically, an angular range between 116° and 152° was used for the optimized trajectories. CONCLUSION: We demonstrated that applying limited angle noncircular trajectories with optimized orientations in 3D space can provide a suitable image quality for particular image targets and has a potential for limited angle and low-dose CBCT-based interventions under strong spatial constraints.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Cintilografia
16.
Artigo em Inglês | MEDLINE | ID: mdl-32457883

RESUMO

Conventional medical imaging phantoms are limited by simplified geometry and radiographic skeletal homogeneity, which confines their usability for image quality assessment and radiation dosimetry. These challenges can be addressed by additive manufacturing technology, colloquially called 3D printing, which provides accurate anatomical replication and flexibility in material manipulation. In this study, we used Computed Tomography (CT)-based modified PolyJetTM 3D printing technology to print a hollow thorax phantom simulating skeletal morphology of the patient. To achieve realistic heterogenous skeletal radiation attenuation, we developed a novel radiopaque amalgamate constituting of epoxy, polypropylene and bone meal powder in twelve different ratios. We performed CT analysis for quantification of material radiodensity (in Hounsfield Units, HU) and for identification of specific compositions corresponding to the various skeletal structures in the thorax. We filled the skeletal structures with their respective radiopaque amalgamates. The phantom and isolated 3D printed rib specimens were rescanned by CT for reproducibility tests regarding verification of radiodensity and geometry. Our results showed that structural densities in the range of 42-705HU could be achieved. The radiodensity of the reconstructed phantom was comparable to the three skeletal structures investigated in a real patient thorax CT: ribs, ventral vertebral body and dorsal vertebral body. Reproducibility tests based on physical dimensional comparison between the patient and phantom CT-based segmentation displayed 97% of overlap in the range of 0.00-4.57 mm embracing the anatomical accuracy. Thus, the additively manufactured anthropomorphic thorax phantom opens new vistas for imaging- and radiation-based patient care in precision medicine.

17.
Sensors (Basel) ; 19(15)2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357545

RESUMO

The goal of this work is to further improve positron emission tomography (PET) attenuation correction and magnetic resonance (MR) sensitivity for head and neck applications of PET/MR. A dedicated 24-channel receive-only array, fully-integrated with a hydraulic system to move a transmission source helically around the patient and radiofrequency (RF) coil array, is designed, implemented, and evaluated. The device enables the calculation of attenuation coefficients from PET measurements at 511 keV including the RF coil and the particular patient. The RF coil design is PET-optimized by minimizing photon attenuation from coil components and housing. The functionality of the presented device is successfully demonstrated by calculating the attenuation map of a water bottle based on PET transmission measurements; results are in excellent agreement with reference values. It is shown that the device itself has marginal influence on the static magnetic field B0 and the radiofrequency transmit field B1 of the 3T PET/MR system. Furthermore, the developed RF array is shown to outperform a standard commercial 16-channel head and neck coil in terms of signal-to-noise ratio (SNR) and parallel imaging performance. In conclusion, the presented hardware enables accurate calculation of attenuation maps for PET/MR systems while improving the SNR of corresponding MR images in a single device without degrading the B0 and B1 homogeneity of the scanner.


Assuntos
Cabeça/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Pescoço/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Humanos , Processamento de Imagem Assistida por Computador , Imagem Multimodal , Imagens de Fantasmas , Ondas de Rádio , Razão Sinal-Ruído
18.
IEEE Trans Med Imaging ; 35(10): 2319-2328, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27164581

RESUMO

Deformable image registration (DIR) has the potential to improve modern radiotherapy in many aspects, including volume definition, treatment planning and image-guided adaptive radiotherapy. Studies have shown its possible clinical benefits. However, measuring DIR accuracy is difficult without known ground truth, but necessary before integration in the radiotherapy workflow. Visual assessment is an important step towards clinical acceptance. We propose a visualization framework which supports the exploration and the assessment of DIR accuracy. It offers different interaction and visualization features for exploration of candidate regions to simplify the process of visual assessment. The visualization is based on voxel-wise comparison of local image patches for which dissimilarity measures are computed and visualized to indicate locally the registration results. We performed an evaluation with three radiation oncologists to demonstrate the viability of our approach. In the evaluation, lung regions were rated by the participants with regards to their visual accuracy and compared to the registration error measured with expert defined landmarks. Regions rated as "accepted" had an average registration error of 1.8 mm, with the highest single landmark error being 3.3 mm. Additionally, survey results show that the proposed visualizations support a fast and intuitive investigation of DIR accuracy, and are suitable for finding even small errors.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Humanos , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Radiografia Torácica , Radioterapia Guiada por Imagem , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X
19.
Int J Prosthodont ; 29(3): 274-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148989

RESUMO

PURPOSE: The aim of this study was to investigate the hamulus-incisive-papilla (HIP) plane as an alternative for transferring the three-dimensional position of a patient's maxilla to an articulator. MATERIALS AND METHODS: Camper, Frankfurt horizontal, occlusal, and HIP planes were evaluated in 21 patients' computed tomography scans and compared to one another. RESULTS: Analysis of variance showed significant differences between all planes, with the HIP plane being closest to the occlusal plane (HIP-OP: 0.6 ± 4.0 degrees). Frankfurt and Camper planes, being more peripheral, showed higher geometric asymmetries. CONCLUSION: The HIP plane, when used for articulator mounting, results in a closer and more technically reliable patient relationship in a clinical and laboratory context.


Assuntos
Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Imageamento Tridimensional/estatística & dados numéricos , Registro da Relação Maxilomandibular/métodos , Palato Duro/diagnóstico por imagem , Osso Esfenoide/diagnóstico por imagem , Tomografia Computadorizada por Raios X/estatística & dados numéricos , Adulto , Articuladores Dentários , Oclusão Dentária , Feminino , Humanos , Incisivo/diagnóstico por imagem , Registro da Relação Maxilomandibular/instrumentação , Masculino , Maxila/anatomia & histologia , Dente Molar/diagnóstico por imagem , Variações Dependentes do Observador , Projetos Piloto , Valores de Referência , Adulto Jovem
20.
Z Med Phys ; 25(2): 146-55, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25193358

RESUMO

INTRODUCTION: Particle Therapy Positron Emission Tomography (PT-PET) is currently the only clinically applied method for in vivo verification of ion-beam radiotherapy during or close in time to the treatment. Since a direct deduction of the delivered dose from the measured activity is not feasible, images are compared to a reference distribution. The achievable accuracy of two image analysis approaches was investigated by means of reproducible phantom benchmark tests. This is an objective method that excludes patient related factors of influence. MATERIAL AND METHODS: Two types of phantoms were designed to produce well defined deviations in the activity distributions. Pure range differences were simulated using the first phantom type while the other emulated cavity structures. The phantoms were irradiated with (12)C-ions. PT-PET measurements were performed by means of a camera system installed at the beamline. Different measurement time scenarios were investigated, assuming a PET scanner directly at the irradiation site or placed within the treatment room. The images were analyzed by means of the Pearson Correlation Coefficient (PCC) and a range calculation algorithm combined with a dedicated cavity filling detection method. RESULTS: Range differences could be measured with an error of less than 2 mm. The range comparison algorithm yielded slightly better results than the PCC method. The filling of a cavity structure could be safely detected if its inner diameter was at least 5 mm. CONCLUSION: Both approaches evaluate the PT-PET data in an objective way and deliver promising results for in-beam and in-room PET for clinical realistic dose rates.


Assuntos
Radioterapia com Íons Pesados/métodos , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Tomografia por Emissão de Pósitrons/métodos , Radioterapia Guiada por Imagem/métodos , Simulação por Computador , Humanos , Modelos Biológicos , Imagens de Fantasmas , Radiometria/métodos , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA