Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Behav Brain Res ; 463: 114923, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38408523

RESUMO

Abnormalities within the hypothalamic-pituitary-adrenal (HPA) axis and autonomic nervous system have been implicated in depression. Studies have reported glucocorticoid insensitivity and reduced heart rate variability (HRV) in depressive disorders. However, little is known about the effects of cortisol on HRV and resting-state functional connectivity (rsFC) of the central autonomic network (CAN) in depression. We collected resting-state fMRI and cardiac data for women with different depression histories (n = 61) after administration of cortisol and placebo using a double-blind crossover design. We computed rsFC for R-amygdala and L-amygdala seeds and assessed the change in HRV after cortisol (cortisol-placebo). Analyses examined the effects of acute cortisol administration on HRV and rsFC of the R-amygdala and L-amygdala. There was a significant interaction between HRV and treatment for rsFC between the amygdala and CAN regions. We found lower rsFC between the L-amygdala and putamen for those with a greater decrease in HRV after cortisol. There was also reduced rsFC between the R-amygdala and dorsomedial prefrontal cortex, putamen, middle cingulate cortex, insula, and cerebellum in those with lower HRV after cortisol. These results remained significant after adjusting for depression symptoms, age, and race. Our findings suggest that the effect of cortisol on CAN connectivity is related to its effects on HRV. Overall, these results could inform transdiagnostic interventions targeting HRV and the stress response systems across clinical and non-clinical populations.


Assuntos
Depressão , Hidrocortisona , Humanos , Feminino , Frequência Cardíaca , Depressão/diagnóstico por imagem , Depressão/tratamento farmacológico , Giro do Cíngulo , Córtex Pré-Frontal , Imageamento por Ressonância Magnética
2.
Brain Imaging Behav ; 18(1): 159-170, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37955810

RESUMO

This investigation explores memory performance using the California Verbal Learning Test in relation to morphometric and connectivity measures of the memory network in severe traumatic brain injury. Twenty-two adolescents with severe traumatic brain injury were recruited for multimodal MRI scanning 1-2 years post-injury at 13 participating sites. Analyses included hippocampal volume derived from anatomical T1-weighted imaging, fornix white matter microstructure from diffusion tensor imaging, and hippocampal resting-state functional magnetic resonance imaging connectivity as well as diffusion-based structural connectivity. A typically developing control cohort of forty-nine age-matched children also underwent scanning and neurocognitive assessment. Results showed hippocampus volume was decreased in traumatic brain injury with respect to controls. Further, hippocampal volume loss was associated with worse performance on memory and learning in traumatic brain injury subjects. Similarly, hippocampal fornix fractional anisotropy was reduced in traumatic brain injury with respect to controls, while decreased fractional anisotropy in the hippocampal fornix also was associated with worse performance on memory and learning in traumatic brain injury subjects. Additionally, reduced structural connectivity of left hippocampus to thalamus and calcarine sulcus was associated with memory and learning in traumatic brain injury subjects. Functional connectivity in the left hippocampal network was also associated with memory and learning in traumatic brain injury subjects. These regional findings from a multi-modal neuroimaging approach should not only be useful for gaining valuable insight into traumatic brain injury induced memory and learning disfunction, but may also be informative for monitoring injury progression, recovery, and for developing rehabilitation as well as therapy strategies.


Assuntos
Lesões Encefálicas Traumáticas , Imageamento por Ressonância Magnética , Adolescente , Humanos , Criança , Imageamento por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Lesões Encefálicas Traumáticas/patologia , Hipocampo/patologia , Neuroimagem
3.
Psychiatry Res Neuroimaging ; 337: 111760, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039780

RESUMO

Previous resting-state functional connectivity (rsFC) research has identified several brain networks impacted by depression and cortisol, including default mode (DMN), frontoparietal (FPN), and salience networks (SN). In the present study, we examined the effects of cortisol administration on rsFC of these networks in individuals varying in depression history and severity. We collected resting-state fMRI scans and self-reported depression symptom severity for 74 women with and without a history of depression after cortisol and placebo administration using a double-blind, crossover design. We conducted seed-based rsFC analyses for DMN, FPN, and SN seeds to examine rsFC changes after cortisol vs. placebo administration in relation to depression history group and severity. Results revealed a main effect of depression group, with lower left amygdala (SN)-middle temporal gyrus connectivity in women with a history of depression. Cortisol administration increased insula (SN)-inferior frontal gyrus and superior temporal gyrus connectivity. We also found that greater depression severity was associated with increased PCC (DMN)-cerebellum connectivity after cortisol. These results did not survive Bonferroni correction for seed ROIs and should be interpreted with caution. Our findings indicate that acute cortisol elevation may normalize aberrant connectivity of DMN and SN regions, which could help inform clinical treatments for depression.


Assuntos
Depressão , Hidrocortisona , Humanos , Feminino , Depressão/diagnóstico por imagem , Depressão/tratamento farmacológico , Hidrocortisona/farmacologia , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Córtex Pré-Frontal
4.
Ann Clin Transl Neurol ; 10(11): 2149-2154, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37872734

RESUMO

Short-range functional connectivity in the limbic network is increased in patients with temporal lobe epilepsy (TLE), and recent studies have shown that cortical myelin content correlates with fMRI connectivity. We thus hypothesized that myelin may increase progressively in the epileptic network. We compared T1w/T2w gray matter myelin maps between TLE patients and age-matched controls and assessed relationships between myelin and aging. While both TLE patients and healthy controls exhibited increased T1w/T2w intensity with age, we found no evidence for significant group-level aberrations in overall myelin content or myelin changes through time in TLE.


Assuntos
Epilepsia do Lobo Temporal , Substância Cinzenta , Humanos , Substância Cinzenta/diagnóstico por imagem , Epilepsia do Lobo Temporal/diagnóstico por imagem , Envelhecimento , Imageamento por Ressonância Magnética , Bainha de Mielina
5.
Front Neuroimaging ; 2: 1072927, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554646

RESUMO

The monitoring and assessment of data quality is an essential step in the acquisition and analysis of functional MRI (fMRI) data. Ideally data quality monitoring is performed while the data are being acquired and the subject is still in the MRI scanner so that any errors can be caught early and addressed. It is also important to perform data quality assessments at multiple points in the processing pipeline. This is particularly true when analyzing datasets with large numbers of subjects, coming from multiple investigators and/or institutions. These quality control procedures should monitor not only the quality of the original and processed data, but also the accuracy and consistency of acquisition parameters. Between-site differences in acquisition parameters can guide the choice of certain processing steps (e.g., resampling from oblique orientations, spatial smoothing). Various quality control metrics can determine what subjects to exclude from the group analyses, and can also guide additional processing steps that may be necessary. This paper describes a combination of qualitative and quantitative assessments to determine the quality of fMRI data. Processing is performed using the AFNI data analysis package. Qualitative assessments include visual inspection of the structural T1-weighted and fMRI echo-planar images, functional connectivity maps, functional connectivity strength, and temporal signal-to-noise maps concatenated from all subjects into a movie format. Quantitative metrics include the acquisition parameters, statistics about the level of subject motion, temporal signal-to-noise ratio, smoothness of the data, and the average functional connectivity strength. These measures are evaluated at different steps in the processing pipeline to catch gross abnormalities in the data, and to determine deviations in acquisition parameters, the alignment to template space, the level of head motion, and other sources of noise. We also evaluate the effect of different quantitative QC cutoffs, specifically the motion censoring threshold, and the impact of bandpass filtering. These qualitative and quantitative metrics can then provide information about what subjects to exclude and what subjects to examine more closely in the analysis of large datasets.

6.
Bioelectron Med ; 9(1): 9, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118841

RESUMO

BACKGROUND: Vagus nerve stimulation (VNS) is a FDA approved therapy regularly used to treat a variety of neurological disorders that impact the central nervous system (CNS) including epilepsy and stroke. Putatively, the therapeutic efficacy of VNS results from its action on neuromodulatory centers via projections of the vagus nerve to the solitary tract nucleus. Currently, there is not an established large animal model that facilitates detailed mechanistic studies exploring how VNS impacts the function of the CNS, especially during complex behaviors requiring motor action and decision making. METHODS: We describe the anatomical organization, surgical methodology to implant VNS electrodes on the left gagus nerve and characterization of target engagement/neural interface properties in a non-human primate (NHP) model of VNS that permits chronic stimulation over long periods of time. Furthermore, we describe the results of pilot experiments in a small number of NHPs to demonstrate how this preparation might be used in an animal model capable of performing complex motor and decision making tasks. RESULTS: VNS electrode impedance remained constant over months suggesting a stable interface. VNS elicited robust activation of the vagus nerve which resulted in decreases of respiration rate and/or partial pressure of carbon dioxide in expired air, but not changes in heart rate in both awake and anesthetized NHPs. CONCLUSIONS: We anticipate that this preparation will be very useful to study the mechanisms underlying the effects of VNS for the treatment of conditions such as epilepsy and depression, for which VNS is extensively used, as well as for the study of the neurobiological basis underlying higher order functions such as learning and memory.

7.
J Psychiatr Res ; 156: 570-578, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36368247

RESUMO

Rumination is a common feature of depression and predicts the onset and maintenance of depressive episodes. Maladaptive and adaptive subtypes of rumination contribute to distinct outcomes, with brooding worsening negative mood and reflection related to fewer depression symptoms in healthy populations. Neuroimaging studies have implicated several cortical midline and lateral prefrontal brain regions in rumination. Recent research indicates that blood oxygen level-dependent (BOLD) signal variability may be a novel predictor of cognitive flexibility. However, no prior studies have investigated whether brooding and reflection are associated with distinct patterns of BOLD signal variability in depression. We collected resting-state fMRI data for 79 women with different depression histories: no history, past history, and current depression. We examined differences in BOLD signal variability (BOLDSD) related to rumination subtypes for the following regions of interest previously implicated in rumination: amygdala, medial prefrontal, anterior cingulate, posterior cingulate, and dorsolateral prefrontal cortices (dlPFC). Rumination subtype was associated with BOLDSD in the dlPFC, with greater levels of brooding associated with lower BOLDSD in the dlPFC, even after controlling for depression severity. Depression history was related to BOLDSD in the dlPFC, with reduced BOLDSD in those with current depression versus no history of depression. These findings provide a novel demonstration of the neural circuitry associated with maladaptive rumination in depression and implicate decreased prefrontal neural signal variability in the pathophysiology of depression.


Assuntos
Encéfalo , Depressão , Oxigênio , Ruminação Cognitiva , Feminino , Humanos , Depressão/psicologia , Oxigênio/sangue , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem
8.
Behav Brain Res ; 433: 113999, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811000

RESUMO

Aberrant activity and connectivity in default mode (DMN), frontoparietal (FPN), and salience (SN) network regions is well-documented in depression. Recent neuroimaging research suggests that altered variability in the blood oxygen level-dependent (BOLD) signal may disrupt normal network integration and be an important novel predictor of psychopathology. However, no studies have yet determined the relationship between resting-state BOLD signal variability and depressive disorders nor applied BOLD signal variability features to the classification of depression history using machine learning (ML). We collected resting-state fMRI data for 79 women with different depression histories: no history, past history, and current depressive disorder. We tested voxelwise differences in BOLD signal variability related to depression group and severity. We also investigated whether BOLD signal variability of DMN, FPN, and SN regions could predict depression history group using a supervised random forest ML model. Results indicated that individuals with any history of depression had significantly decreased BOLD signal variability in the left and right cerebellum and right parietal cortex (pFWE <0.05). Furthermore, greater depression severity was also associated with reduced BOLD signal variability in the cerebellum. A random forest model classified participant depression history with 74% accuracy, with the ventral anterior cingulate cortex of the DMN as the most important variable in the model. These findings provide novel support for resting-state BOLD signal variability as a marker of neural dysfunction in depression and implicate decreased neural signal variability in the pathophysiology of depression.


Assuntos
Transtorno Depressivo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Transtorno Depressivo/diagnóstico por imagem , Feminino , Giro do Cíngulo , Humanos , Vias Neurais/diagnóstico por imagem , Lobo Parietal/diagnóstico por imagem
9.
Brain Connect ; 12(8): 740-753, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35152725

RESUMO

Introduction: Subject head motion is an ongoing challenge in functional magnetic resonance imaging, particularly in the estimation of functional connectivity. Infants (1-month old) scanned during nonsedated sleep often have occasional but large movements of several millimeters separated by periods with relatively little movement. This results in residual signal changes even after image realignment and can distort estimates of functional connectivity. A new motion correction technique, JumpCor, is introduced to reduce the effects of this motion and compared to other existing techniques. Methods: Different approaches for reducing residual motion artifacts after image realignment were compared both in actual and simulated data: JumpCor, regressing out the estimated subject motion, and regressing out the average white matter, cerebrospinal fluid (CSF), and global signals and their temporal derivatives. Results: Motion-related signal changes resulting from infrequent large motion were significantly reduced both by regressing out the estimated motion parameters and by JumpCor. Furthermore, JumpCor significantly reduced artifacts and improved the quality of functional connectivity estimates when combined with typical preprocessing approaches. Discussion: Motion-related signal changes resulting from occasional large motion can be effectively corrected using JumpCor and to a certain extent also by regressing out the estimated motion. This technique should reduce the data loss in studies where participants exhibit this type of motion, such as sleeping infants.


Assuntos
Artefatos , Mapeamento Encefálico , Humanos , Lactente , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Movimento (Física) , Imageamento por Ressonância Magnética/métodos , Progressão da Doença
11.
J Affect Disord ; 287: 247-254, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33799044

RESUMO

BACKGROUND: Depression is associated with altered functional connectivity and altered cortisol sensitivity, but the effects of cortisol on functional connectivity in depression are unknown. Previous research shows that brief cortisol augmentation (CORT) has beneficial neurocognitive effects in depression. METHODS: We investigated the effects of CORT (20mg oral cortisol) on functional connectivity during emotion processing in women with depression. Participants included 75 women with no depression or a depressive disorder. In a double-blind, crossover study, we used functional magnetic resonance imaging to measure effects of CORT vs. placebo on task-based functional connectivity during presentation of emotionally-laden images. We performed psychophysiological interaction (PPI) to test interactions among depression severity, cortisol administration, and task-dependent functional connectivity using the hippocampus and amygdala as seeds. RESULTS: During the presentation of negative images, CORT (vs. placebo) increased functional connectivity between the hippocampus and putamen in association with depression severity. During the presentation of positive pictures CORT increased functional connectivity between the hippocampus and middle frontal gyrus as well as superior temporal gyrus in association with depression. LIMITATIONS: Because cortisol was pharmacologically manipulated, results cannot be extrapolated to endogenous increases in cortisol levels. The sample did not permit investigation of differences due to race, ethnicity, or sex. Co-morbidities such as anxiety or PTSD were not accounted for. CONCLUSIONS: The results suggest that CORT has normalizing effects on task-dependent functional connectivity in women with depression during emotion processing. Increasing cortisol availability or signaling may have therapeutic benefits within affective disorders.


Assuntos
Depressão , Hidrocortisona , Encéfalo/diagnóstico por imagem , Estudos Cross-Over , Depressão/tratamento farmacológico , Emoções , Feminino , Humanos , Imageamento por Ressonância Magnética
12.
13.
J Behav Brain Sci ; 10(8): 344-370, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32968547

RESUMO

BACKGROUND: Brain atrophy and cognitive deficits persist among individuals with suppressed HIV disease. The impact of cannabis use is unknown. METHODS: HIV+ and HIV- participants underwent cross-sectional magnetic resonance imaging and neuropsychological testing. Lifetime frequency, duration (years), and recency of cannabis use were self-reported. Relationships of cannabis use to resting-state functional connectivity (RSFC) and to 9 regional brain volumes were assessed with corrections for multiple comparisons. Peripheral blood cytokines and monocyte subsets were measured in the HIV+ group and examined in relation to cannabis exposure. RESULTS: We evaluated 52 HIV+ [50.8 ± 7.1 years old; 100% on antiretroviral therapy ≥ 3 months; 83% with plasma viral load < 50 copies/mL] and 55 HIV- [54.0 ± 7.5 years old] individuals. Among HIV+ participants, recent cannabis use (within 12 months) was associated with diminished RSFC, including of occipital cortex, controlling for age. Duration of use correlated negatively with volumes of all regions (most strikingly the nucleus accumbens) independently of recent use and intracranial volume. Recent use was associated with larger caudate and white matter volumes and lower soluble vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1 concentrations. Duration of use correlated positively with psychomotor speed. Use > 10 times/lifetime was linked to more somatic symptoms, better executive function, and lower CD14+CD16++ monocyte count. CONCLUSION: HIV+ individuals demonstrated opposing associations with cannabis. Recent use may weaken RSFC and prolonged consumption may exacerbate atrophy of the accumbens and other brain regions. More frequent or recent cannabis use may reduce the inflammation and CD14+CD16++ monocytes that facilitate HIV neuroinvasion. HIV-specific cannabis studies are necessary.

14.
Neuroimage Clin ; 27: 102341, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32707534

RESUMO

This study explored the taxonomy of cognitive impairment within temporal lobe epilepsy and characterized the sociodemographic, clinical and neurobiological correlates of identified cognitive phenotypes. 111 temporal lobe epilepsy patients and 83 controls (mean ages 33 and 39, 57% and 61% female, respectively) from the Epilepsy Connectome Project underwent neuropsychological assessment, clinical interview, and high resolution 3T structural and resting-state functional MRI. A comprehensive neuropsychological test battery was reduced to core cognitive domains (language, memory, executive, visuospatial, motor speed) which were then subjected to cluster analysis. The resulting cognitive subgroups were compared in regard to sociodemographic and clinical epilepsy characteristics as well as variations in brain structure and functional connectivity. Three cognitive subgroups were identified (intact, language/memory/executive function impairment, generalized impairment) which differed significantly, in a systematic fashion, across multiple features. The generalized impairment group was characterized by an earlier age at medication initiation (P < 0.05), fewer patient (P < 0.001) and parental years of education (P < 0.05), greater racial diversity (P < 0.05), and greater number of lifetime generalized seizures (P < 0.001). The three groups also differed in an orderly manner across total intracranial (P < 0.001) and bilateral cerebellar cortex volumes (P < 0.01), and rate of bilateral hippocampal atrophy (P < 0.014), but minimally in regional measures of cortical volume or thickness. In contrast, large-scale patterns of cortical-subcortical covariance networks revealed significant differences across groups in global and local measures of community structure and distribution of hubs. Resting-state fMRI revealed stepwise anomalies as a function of cluster membership, with the most abnormal patterns of connectivity evident in the generalized impairment group and no significant differences from controls in the cognitively intact group. Overall, the distinct underlying cognitive phenotypes of temporal lobe epilepsy harbor systematic relationships with clinical, sociodemographic and neuroimaging correlates. Cognitive phenotype variations in patient and familial education and ethnicity, with linked variations in total intracranial volume, raise the question of an early and persisting socioeconomic-status related neurodevelopmental impact, with additional contributions of clinical epilepsy factors (e.g., lifetime generalized seizures). The neuroimaging features of cognitive phenotype membership are most notable for disrupted large scale cortical-subcortical networks and patterns of functional connectivity with bilateral hippocampal and cerebellar atrophy. The cognitive taxonomy of temporal lobe epilepsy appears influenced by features that reflect the combined influence of socioeconomic, neurodevelopmental and neurobiological risk factors.


Assuntos
Conectoma , Epilepsia do Lobo Temporal , Adulto , Cognição , Epilepsia do Lobo Temporal/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Fenótipo
15.
Front Syst Neurosci ; 14: 40, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719590

RESUMO

Posttraumatic stress disorder (PTSD) is widely associated with deficits in implicit emotion regulation. Recently, adaptive fMRI neurofeedback (A-NF) has been developed as a methodology that offers a unique probe of brain networks that mediate implicit emotion regulation and their impairment in PTSD. We designed an A-NF paradigm in which difficulty of an emotional conflict task (i.e., embedding trauma distractors onto a neutral target stimulus) was controlled by a whole-brain classifier trained to differentiate attention to the trauma distractor vs. target. We exploited this methodology to test whether PTSD was associated with: (1) an altered brain state that differentiates attention towards vs. away from trauma cues; and (2) an altered ability to use concurrent feedback about brain states during an implicit emotion regulation task. Adult women with a current diagnosis of PTSD (n = 10) and healthy control (n = 9) women participated in this task during 3T fMRI. During two initial non-feedback runs used to train a whole-brain classifier, we observed: (1) poorer attention performance in PTSD; and (2) a linear relationship between brain state discrimination and attention performance, which was significantly attenuated among the PTSD group when the task contained trauma cues. During the A-NF phase, the PTSD group demonstrated poorer ability to regulate brain states as per attention instructions, and this poorer ability was related to PTSD symptom severity. Further, PTSD was associated with the heightened encoding of feedback in the insula and hippocampus. These results suggest a novel understanding of whole-brain states and their regulation that underlie emotion regulation deficits in PTSD.

16.
Epilepsy Behav ; 110: 107172, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32554180

RESUMO

Neuroticism, a core personality trait characterized by a tendency towards experiencing negative affect, has been reported to be higher in people with temporal lobe epilepsy (TLE) compared with healthy individuals. Neuroticism is a known predictor of depression and anxiety, which also occur more frequently in people with TLE. The purpose of this study was to identify abnormalities in whole-brain resting-state functional connectivity in relation to neuroticism in people with TLE and to determine the degree of unique versus shared patterns of abnormal connectivity in relation to elevated symptoms of depression and anxiety. Ninety-three individuals with TLE (55 females) and 40 healthy controls (18 females) from the Epilepsy Connectome Project (ECP) completed measures of neuroticism, depression, and anxiety, which were all significantly higher in people with TLE compared with controls. Resting-state functional connectivity was compared between controls and groups with TLE with high and low neuroticism using analysis of variance (ANOVA) and t-test. In secondary analyses, the same analytics were performed using measures of depression and anxiety and the unique variance in resting-state connectivity associated with neuroticism independent of symptoms of depression and anxiety identified. Increased neuroticism was significantly associated with hyposynchrony between the right hippocampus and Brodmann area (BA) 9 (region of prefrontal cortex (PFC)) (p < 0.005), representing a unique relationship independent of symptoms of depression and anxiety. Hyposynchrony of connection between the right hippocampus and BA47 (anterior frontal operculum) was associated with high neuroticism and with higher depression and anxiety scores (p < 0.05), making it a shared abnormal connection for the three measures. In conclusion, increased neuroticism exhibits both unique and shared patterns of abnormal functional connectivity with depression and anxiety symptoms between regions of the mesial temporal and frontal lobe.


Assuntos
Epilepsia do Lobo Temporal/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Sistema Límbico/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Neuroticismo/fisiologia , Lobo Temporal/diagnóstico por imagem , Adulto , Conectoma/métodos , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Lobo Frontal/fisiopatologia , Lateralidade Funcional/fisiologia , Humanos , Sistema Límbico/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Descanso/fisiologia , Lobo Temporal/fisiopatologia
17.
Neuroimage Clin ; 25: 102183, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32058319

RESUMO

The association of epilepsy with structural brain changes and cognitive abnormalities in midlife has raised concern regarding the possibility of future accelerated brain and cognitive aging and increased risk of later life neurocognitive disorders. To address this issue we examined age-related processes in both structural and functional neuroimaging among individuals with temporal lobe epilepsy (TLE, N = 104) who were participants in the Epilepsy Connectome Project (ECP). Support vector regression (SVR) models were trained from 151 healthy controls and used to predict TLE patients' brain ages. It was found that TLE patients on average have both older structural (+6.6 years) and functional (+8.3 years) brain ages compared to healthy controls. Accelerated functional brain age (functional - chronological age) was mildly correlated (corrected P = 0.07) with complex partial seizure frequency and the number of anti-epileptic drug intake. Functional brain age was a significant correlate of declining cognition (fluid abilities) and partially mediated chronological age-fluid cognition relationships. Chronological age was the only positive predictor of crystallized cognition. Accelerated aging is evident not only in the structural brains of patients with TLE, but also in their functional brains. Understanding the causes of accelerated brain aging in TLE will be clinically important in order to potentially prevent or mitigate their cognitive deficits.


Assuntos
Senilidade Prematura , Córtex Cerebral , Envelhecimento Cognitivo , Disfunção Cognitiva , Conectoma/métodos , Epilepsia do Lobo Temporal , Adulto , Fatores Etários , Senilidade Prematura/diagnóstico por imagem , Senilidade Prematura/etiologia , Senilidade Prematura/patologia , Senilidade Prematura/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Envelhecimento Cognitivo/fisiologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Máquina de Vetores de Suporte , Adulto Jovem
18.
Sci Rep ; 9(1): 18667, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822684

RESUMO

Mindfulness training has been shown to improve attention and change the underlying brain substrates in adults. Most mindfulness training programs involve a myriad of techniques, and it is difficult to attribute changes to any particular aspect of the program. Here, we created a video game, Tenacity, which models a specific mindfulness technique - focused attention on one's breathing - and assessed its potential to train an attentional network in adolescents. A combined analysis of resting state functional connectivity (rs-FC) and diffusion tensor imaging (DTI) yielded convergent results - change in communication within the left fronto-parietal network after two weeks of playing Tenacity compared to a control game. Rs-FC analysis showed greater connectivity between left dorsolateral prefrontal cortex (dlPFC) and left inferior parietal cortex (IPC) in the Tenacity group. Importantly, changes in left dlPFC - IPC rs-FC and changes in structural connectivity of the white matter tract that connects these regions -left superior longitudinal fasiculus (SLF) - were associated with changes in performance on an attention task. Finally, changes in left dlPFC - IPC rs-FC correlated with the change in left SLF structural connectivity as measured by fractional anisotropy (FA) in the Tenacity group only.


Assuntos
Emoções , Lobo Frontal/diagnóstico por imagem , Atenção Plena , Lobo Parietal/diagnóstico por imagem , Jogos de Vídeo , Substância Branca/diagnóstico por imagem , Adolescente , Anisotropia , Atenção , Criança , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Imagem Multimodal
19.
Epilepsy Behav ; 98(Pt A): 220-227, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31387000

RESUMO

Behavioral and personality disorders in temporal lobe epilepsy (TLE) have been a topic of interest and controversy for decades, with less attention paid to alterations in normal personality structure and traits. In this investigation, core personality traits (the Big 5) and their neurobiological correlates in TLE were explored using the Neuroticism Extraversion Openness-Five Factor Inventory (NEO-FFI) and structural magnetic resonance imaging (MRI) through the Epilepsy Connectome Project (ECP). NEO-FFI scores from 67 individuals with TLE (34.6 ±â€¯9.5 years; 67% women) were compared to 31 healthy controls (32.8 ±â€¯8.9 years; 41% women) to assess differences in the Big 5 traits (agreeableness, openness, conscientiousness, neuroticism, and extraversion). Individuals with TLE showed significantly higher neuroticism, with no significant differences on the other traits. Neural correlates of neuroticism were then determined in participants with TLE including cortical and subcortical volumes. Distributed reductions in cortical gray matter volumes were associated with increased neuroticism. Subcortically, hippocampal and amygdala volumes were negatively associated with neuroticism. These results offer insight into alterations in the Big 5 personality traits in TLE and their brain-related correlates.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma/métodos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Neuroticismo , Inventário de Personalidade , Adulto , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiologia , Encéfalo/fisiologia , Epilepsia do Lobo Temporal/psicologia , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Neuroticismo/fisiologia , Personalidade/fisiologia
20.
Cortex ; 117: 41-52, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30927560

RESUMO

Cognitive slowing is a known but comparatively under-investigated neuropsychological complication of the epilepsies in relation to other known cognitive comorbidities such as memory, executive function and language. Here we focus on a novel metric of processing speed, characterize its relative salience compared to other cognitive difficulties in epilepsy, and explore its underlying neurobiological correlates. Research participants included 55 patients with temporal lobe epilepsy (TLE) and 58 healthy controls from the Epilepsy Connectome Project (ECP) who were administered a battery of tests yielding 14 neuropsychological measures, including selected tests from the NIH Toolbox-Cognitive Battery, and underwent 3T MRI and resting state fMRI. TLE patients exhibited a pattern of generalized cognitive impairment with very few lateralized abnormalities. Using the neuropsychological measures, machine learning (Support Vector Machine binary classification model) classified the TLE and control groups with 74% accuracy with processing speed (NIH Toolbox Pattern Comparison Processing Speed Test) the best predictor. In TLE, slower processing speed was associated predominantly with decreased local gyrification in regions including the rostral and caudal middle frontal gyrus, inferior precentral cortex, insula, inferior parietal cortex (angular and supramarginal gyri), lateral occipital cortex, rostral anterior cingulate, and medial orbital frontal regions, as well as three small regions of the temporal lobe. Slower processing speed was also associated with decreased connectivity between the primary visual cortices in both hemispheres and the left supplementary motor area, as well as between the right parieto-occipital sulcus and right middle insular area. Overall, slowed processing speed is an important cognitive comorbidity of TLE associated with altered brain structure and connectivity.


Assuntos
Encéfalo/diagnóstico por imagem , Transtornos Cognitivos/etiologia , Cognição/fisiologia , Epilepsia do Lobo Temporal/complicações , Adulto , Transtornos Cognitivos/diagnóstico por imagem , Transtornos Cognitivos/psicologia , Conectoma , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/psicologia , Função Executiva/fisiologia , Feminino , Humanos , Idioma , Imageamento por Ressonância Magnética , Masculino , Memória/fisiologia , Pessoa de Meia-Idade , Testes Neuropsicológicos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA