Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(16): 167201, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35522519

RESUMO

The perovskite rare-earth titanates are model Mott insulators with magnetic ground states that are very sensitive to structural distortions. These distortions couple strongly to the orbital degrees of freedom and, in principle, it should be possible to tune the superexchange and the magnetic transition with strain. We investigate the representative system (Y,La,Ca)TiO_{3}, which exhibits low crystallographic symmetry and no structural instabilities. From magnetic susceptibility measurements of the Curie temperature, we demonstrate direct, reversible, and continuous control of ferromagnetism by influencing the TiO_{6} octahedral tilts and rotations with uniaxial strain. The relative change in T_{C} as a function of strain is well described by ab initio calculations, which provides detailed understanding of the complex interactions among structural, orbital, and magnetic properties in rare-earth titanates. The demonstrated manipulation of octahedral distortions opens up far-reaching possibilities for investigations of electron-lattice coupling, competing ground states, and magnetic quantum phase transitions in a wide range of quantum materials.

2.
Phys Rev Lett ; 125(3): 037204, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32745383

RESUMO

In conventional quasi-one-dimensional antiferromagnets with quantum spins, magnetic excitations are carried by either magnons or spinons in different energy regimes: they do not coexist independently, nor could they interact with each other. In this Letter, by combining inelastic neutron scattering, quantum Monte Carlo simulations, and random phase approximation calculations, we report the discovery and discuss the physics of the coexistence of magnons and spinons and their interactions in Botallackite-Cu_{2}(OH)_{3}Br. This is a unique quantum antiferromagnet consisting of alternating ferromagnetic and antiferromagnetic spin-1/2 chains with weak interchain couplings. Our study presents a new paradigm where one can study the interaction between two different types of magnetic quasiparticles: magnons and spinons.

3.
Phys Rev Lett ; 112(1): 017002, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24483920

RESUMO

We report the discovery of surface states in the perovskite superconductor [Tl4]TlTe3 (Tl5Te3) and its nonsuperconducting tin-doped derivative [Tl4](Tl0.4Sn0.6)Te3 as observed by angle-resolved photoemission spectroscopy. Density functional theory calculations predict that the surface states are protected by a Z2 topology of the bulk band structure. Specific heat and magnetization measurements show that Tl5Te3 has a superconducting volume fraction in excess of 95%. Thus Tl5Te3 is an ideal material in which to study the interplay of bulk band topology and superconductivity.

4.
Nat Commun ; 4: 1334, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23299884

RESUMO

Intrinsic magnetoelectric coupling describes the interaction between magnetic and electric polarization through an inherent microscopic mechanism in a single-phase material. This phenomenon has the potential to control the magnetic state of a material with an electric field, an enticing prospect for device engineering. Here, we demonstrate 'giant' magnetoelectric cross-field control in a tetravalent titanate film. In bulk form, EuTiO(3), is antiferromagnetic. However, both anti and ferromagnetic interactions coexist between different nearest europium neighbours. In thin epitaxial films, strain was used to alter the relative strength of the magnetic exchange constants. We not only show that moderate biaxial compression precipitates local magnetic competition, but also demonstrate that the application of an electric field at this strain condition switches the magnetic ground state. Using first-principles density functional theory, we resolve the underlying microscopic mechanism resulting in G-type magnetic order and illustrate how it is responsible for the 'giant' magnetoelectric effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA