Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 9628, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941966

RESUMO

Brown adipose tissue (BAT) undergoes pronounced changes after birth coincident with the loss of the BAT-specific uncoupling protein (UCP)1 and rapid fat growth. The extent to which this adaptation may vary between anatomical locations remains unknown, or whether the process is sensitive to maternal dietary supplementation. We, therefore, conducted a data mining based study on the major fat depots (i.e. epicardial, perirenal, sternal (which possess UCP1 at 7 days), subcutaneous and omental) (that do not possess UCP1) of young sheep during the first month of life. Initially we determined what effect adding 3% canola oil to the maternal diet has on mitochondrial protein abundance in those depots which possessed UCP1. This demonstrated that maternal dietary supplementation delayed the loss of mitochondrial proteins, with the amount of cytochrome C actually being increased. Using machine learning algorithms followed by weighted gene co-expression network analysis, we demonstrated that each depot could be segregated into a unique and concise set of modules containing co-expressed genes involved in adipose function. Finally using lipidomic analysis following the maternal dietary intervention, we confirmed the perirenal depot to be most responsive. These insights point at new research avenues for examining interventions to modulate fat development in early life.


Assuntos
Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/crescimento & desenvolvimento , Tecido Adiposo Branco/metabolismo , Suplementos Nutricionais , Mães , Transcrição Gênica/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Mineração de Dados , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Família Multigênica/genética , Ovinos
2.
Endocrinology ; 158(7): 2212-2225, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28431116

RESUMO

Brown adipose tissue acting through a unique uncoupling protein (UCP1) has a critical role in preventing hypothermia in newborn sheep but is then thought to rapidly disappear during postnatal life. The extent to which the anatomical location of fat influences postnatal development and thermogenic function in adulthood, particularly following feeding, is unknown, and we examined both in our study. Changes in gene expression of functionally important pathways (i.e., thermogenesis, development, adipogenesis, and metabolism) were compared between sternal and retroperitoneal fat depots together with a representative skeletal muscle over the first month of postnatal life, coincident with the loss of brown fat and the accumulation of white fat. In adult sheep, implanted temperature probes were used to characterize the thermogenic response of fat and muscle to feeding and the effects of reduced or increased adiposity. UCP1 was more abundant in sternal fat than in retroperitoneal fat and was retained only in the sternal depot of adults. Distinct differences in the abundance of gene pathway markers were apparent between tissues, with sternal fat exhibiting some similarities with muscle that were not apparent in the retroperitoneal depot. In adults, the postprandial rise in temperature was greater and more prolonged in sternal fat than in retroperitoneal fat and muscle, a difference that was maintained with altered adiposity. In conclusion, sternal adipose tissue retains UCP1 into adulthood, when it shows a greater thermogenic response to feeding than do muscle and retroperitoneal fat. Sternal fat may be more amenable to targeted interventions that promote thermogenesis in large mammals.


Assuntos
Adipogenia/fisiologia , Tecido Adiposo Marrom/fisiologia , Termogênese/fisiologia , Tecido Adiposo Marrom/anatomia & histologia , Adiposidade , Animais , Peso Corporal , Ingestão de Alimentos/fisiologia , Feminino , Gordura Intra-Abdominal/anatomia & histologia , Gordura Intra-Abdominal/fisiologia , Músculo Esquelético/metabolismo , Tamanho do Órgão , Ovinos , Tórax/metabolismo
3.
Expert Rev Endocrinol Metab ; 8(2): 123-125, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30736172

RESUMO

Metabolism & Endocrinology Themed Meeting of the Physiological Society. Brown adipose tissue: a new human organ? The Royal Society, London, UK, 11-13 December 2012 The prevalence of obesity and overweight is increasing rapidly and functional brown adipose tissue (BAT), with its role in energy expenditure, may provide one solution. However, several key questions remain: what is the role of BAT in body metabolism, does substantial diet-induced thermogenesis exist in BAT and can it have a significant impact on total energy expenditure? Brown adipocytes are present within white adipose depots (BRITE cells) and the transcriptional control of these and classical brown adipocytes, remains an area of immense research interest. In addition, BAT has a role in lipoprotein and glucose metabolism and may play a part in aging. These, and several other burning issues around BAT, were discussed at a meeting of the Physiological Society in London, UK (11-13 December 2012).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA