Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(7): 6708-6718, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36972180

RESUMO

MoTe2 has a stable hexagonal semiconducting phase (2H) as well as two semimetallic phases with monoclinic (1T') and orthorhombic (Td) structures. A structural change can thus be accompanied by a significant change in electronic transport properties. The two semimetallic phases are connected by a temperature driven transition and could exhibit topological properties. Here we make extensive Raman measurements as a function of layer thickness, temperature, and electrostatic doping on few layer 2H-MoTe2 and also on 1T'-MoTe2 and Td-WTe2. Recent work in MoTe2 has raised the possibility of a 2H-1T' transition through technology compatible pathways. It has been claimed that such a transition, of promise for device applications, is activated by electrostatic gating. We investigate this claim and find that few-layer tellurides are characterized by high mobility of Te ions, even in ambient conditions and especially through the variation of external parameters like electric field or temperature. These can generate Te clusters, vacancies at crystalline sites, and facilitate structural transitions. We however find that the purported 2H-1T' transition in MoTe2 cannot be obtained by a pure electrostatic field.

2.
Nat Commun ; 12(1): 2926, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006876

RESUMO

The superconductor-insulator transition in two dimensions is a prototype continuous quantum phase transition at absolute zero, driven by a parameter other than temperature. Here we reveal this transition in one unit-cell Bi2.1Sr1.9CaCu2O8+x by space charge doping, a field effect electrostatic doping technique. We determine the related critical parameters and develop a reliable way to estimate doping in the nonsuperconducting region, a crucial and central problem in these materials. Finite-size scaling analysis yields a critical doping of 0.057 holes/Cu, a critical resistance of ~6.85 kΩ and a scaling exponent product νz ~ 1.57. These results, together with earlier work in other materials, provide a coherent picture of the superconductor-insulator transition and its bosonic nature in the underdoped regime of emerging superconductivity in high critical temperature superconductors.

3.
Phys Rev Lett ; 125(14): 145301, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064510

RESUMO

Pressure- and temperature-dependent Raman scattering in GeSe, SnSe, and GeTe for pressures beyond 50 GPa and for temperatures ranging from 78 to 800 K allow us to identify structural and electronic phase transitions, similarities between GeSe and SnSe, and differences with GeTe. Calculations help to deduce the propensity of GeTe for defect formation and the doping that results from it, which gives rise to strong Raman damping beyond anomalous anharmonicity. These properties are related to the underlying chemical bonding and consistent with a recent classification of bonding in several chalcogenide materials that puts GeTe in a separate class of "incipient" metals.

4.
J Phys Condens Matter ; 32(4): 045601, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31585447

RESUMO

Transport measurements can be used to determine the phase diagram of high temperature superconductors by detecting variations in temperature dependence of resistance in different regions of the phase diagram. While for bulk measurements several samples with varying chemical doping are used, we continuously vary carrier density in our ultra-thin two-dimensional Bi2Sr2CaCu2O[Formula: see text] device by electrostatic means and the space charge doping method. Here we concentrate on a low-disorder, high quality single unit cell thick sample. We establish the crossover to strange metal from the pseudogap and Fermi liquid phases in the normal state, close to the superconducting dome. By extrapolation we demarcate a critical doping region which is thought to correspond to a quantum phase transition at very low temperature.

5.
Phys Rev Lett ; 122(14): 145701, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31050486

RESUMO

Pressure-induced phase transitions in GeTe, a prototype phase change material, have been studied to date with diffraction which is not sensitive to anharmonicity-induced dynamical effects. GeTe is also prone to surface oxidation which may compromise surface sensitive measurements. These factors could be responsible for the lack of clarity about the phases and transitions intervening in the phase diagram of GeTe. We have used high-pressure Raman scattering and ab initio pseudopotential density functional calculations to unambiguously establish the high-pressure phase diagram and identify three phases up to 57 GPa, a low-pressure rhombohedral phase, an intermediate pressure cubic phase, and a high-pressure orthorhombic phase. We detect substantial broadening and softening of Raman modes at low pressure and identify the transition regions and possible intermediate phases.

6.
Nat Commun ; 8(1): 2060, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233988

RESUMO

The phase diagram of hole-doped high critical temperature superconductors as a function of doping and temperature has been intensively studied with chemical variation of doping. Chemical doping can provoke structural changes and disorder, masking intrinsic effects. Alternatively, a field-effect transistor geometry with an electrostatically doped, ultra-thin sample can be used. However, to probe the phase diagram, carrier density modulation beyond 1014 cm-2 and transport measurements performed over a large temperature range are needed. Here we use the space charge doping method to measure transport characteristics from 330 K to low temperature. We extract parameters and characteristic temperatures over a large doping range and establish a comprehensive phase diagram for one-unit-cell-thick BSCCO-2212 as a function of doping, temperature and disorder.

7.
Nat Commun ; 6: 8826, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26525386

RESUMO

Atomically thin films of layered materials such as molybdenum disulfide (MoS2) are of growing interest for the study of phase transitions in two-dimensions through electrostatic doping. Electrostatic doping techniques giving access to high carrier densities are needed to achieve such phase transitions. Here we develop a method of electrostatic doping which allows us to reach a maximum n-doping density of 4 × 10(14) cm(-2) in few-layer MoS2 on glass substrates. With increasing carrier density we first induce an insulator to metal transition and subsequently an incomplete metal to superconductor transition in MoS2 with critical temperature ≈10 K. Contrary to earlier reports, after the onset of superconductivity, the superconducting transition temperature does not depend on the carrier density. Our doping method and the results we obtain in MoS2 for samples as thin as bilayers indicates the potential of this approach.

8.
Nanoscale ; 7(14): 5981-6, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25775954

RESUMO

We fabricated a graphene/few-layer InSe heterostructure photo-detector and solved a recurrent materials problem concerning degradation of ultra-thin atomic layers in air. This heterostructure has a largely enhanced performance explained by its fundamentally different mode of functioning with respect to the corresponding device without graphene.

9.
Nanotechnology ; 24(41): 415708, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24060938

RESUMO

Two-dimensional semiconductors are increasingly relevant for emergent applications and devices, notably for hybrid heterostructures with graphene. We fabricate few-layer, large-area (a few tens of microns across) samples of the III-VI semiconductors GaS, GaSe and InSe using the anodic bonding method and characterize them by simultaneous use of optical microscopy, atomic force microscopy and Raman spectroscopy. Two-terminal devices with a gate are constructed to show the feasibility of applications based on these.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA