Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33028714

RESUMO

Given the complex biology of human immunodeficiency virus (HIV) and its remarkable capacity to evade host immune responses, HIV vaccine efficacy may benefit from the induction of both humoral and cellular immune responses of maximal breadth, potency, and longevity. Guided by this rationale, we set out to develop an immunization protocol aimed at maximizing the induction of anti-Envelope (anti-Env) antibodies and CD8+ T cells targeting non-Env epitopes in rhesus macaques (RMs). Our approach was to deliver the entire simian immunodeficiency virus (SIV) proteome by serial vaccinations. To that end, 12 RMs were vaccinated over 81 weeks with DNA, modified vaccinia Ankara (MVA), vesicular stomatitis virus (VSV), adenovirus type 5 (Ad5), rhesus monkey rhadinovirus (RRV), and DNA again. Both the RRV and the final DNA boosters delivered a near-full-length SIVmac239 genome capable of assembling noninfectious SIV particles and inducing T-cell responses against all nine SIV proteins. Compared to previous SIV vaccine trials, the present DNA-MVA-VSV-Ad5-RRV-DNA regimen resulted in comparable levels of Env-binding antibodies and SIV-specific CD8+ T-cells. Interestingly, one vaccinee developed low titers of neutralizing antibodies (NAbs) against SIVmac239, a tier 3 virus. Following repeated intrarectal marginal-dose challenges with SIVmac239, vaccinees were not protected from SIV acquisition but manifested partial control of viremia. Strikingly, the animal with the low-titer vaccine-induced anti-SIVmac239 NAb response acquired infection after the first SIVmac239 exposure. Collectively, these results highlight the difficulties in eliciting protective immunity against immunodeficiency virus infection.IMPORTANCE Our results are relevant to HIV vaccine development efforts because they suggest that increasing the number of booster immunizations or delivering additional viral antigens may not necessarily improve vaccine efficacy against immunodeficiency virus infection.


Assuntos
Imunidade , Proteoma , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais/imunologia , Antígenos Virais , Linfócitos T CD8-Positivos/imunologia , Humanos , Imunização Secundária , Macaca mulatta/imunologia , Vacinação , Carga Viral , Viremia
2.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31645449

RESUMO

A replication-competent, recombinant strain of rhesus monkey rhadinovirus (RRV) expressing the Gag protein of SIVmac239 was constructed in the context of a glycoprotein L (gL) deletion mutation. Deletion of gL detargets the virus from Eph family receptors. The ability of this gL-minus Gag recombinant RRV to infect, persist, and elicit immune responses was evaluated after intravenous inoculation of two Mamu-A*01+ RRV-naive rhesus monkeys. Both monkeys responded with an anti-RRV antibody response, and quantitation of RRV DNA in peripheral blood mononuclear cells (PBMC) by real-time PCR revealed levels similar to those in monkeys infected with recombinant gL+ RRV. Comparison of RRV DNA levels in sorted CD3+ versus CD20+ versus CD14+ PBMC subpopulations indicated infection of the CD20+ subpopulation by the gL-minus RRV. This contrasts with results obtained with transformed B cell lines in vitro, in which deletion of gL resulted in markedly reduced infectivity. Over a period of 20 weeks, Gag-specific CD8+ T cell responses were documented by major histocompatibility complex class I (MHC-I) tetramer staining. Vaccine-induced CD8+ T cell responses, which were predominantly directed against the Mamu-A*01-restricted Gag181-189CM9 epitope, could be inhibited by blockade of MHC-I presentation. Our results indicate that gL and the interaction with Eph family receptors are dispensable for the colonization of the B cell compartment following high-dose infection by the intravenous route, which suggests the existence of alternative receptors. Further, gL-minus RRV elicits cellular immune responses that are predominantly canonical in nature.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with a substantial disease burden in sub-Saharan Africa, often in the context of human immunodeficiency virus (HIV) infection. The related rhesus monkey rhadinovirus (RRV) has shown potential as a vector to immunize monkeys with antigens from simian immunodeficiency virus (SIV), the macaque model for HIV. KSHV and RRV engage cellular receptors from the Eph family via the viral gH/gL glycoprotein complex. We have now generated a recombinant RRV that expresses the SIV Gag antigen and does not express gL. This recombinant RRV was infectious by the intravenous route, established persistent infection in the B cell compartment, and elicited strong immune responses to the SIV Gag antigen. These results argue against a role for gL and Eph family receptors in B cell infection by RRV in vivo and have implications for the development of a live-attenuated KSHV vaccine or vaccine vector.


Assuntos
Deleção de Genes , Produtos do Gene gag , Vetores Genéticos , Infecções por Herpesviridae , Rhadinovirus , Vacinas contra a SAIDS , Vírus da Imunodeficiência Símia , Animais , Antígenos CD/imunologia , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Produtos do Gene gag/genética , Produtos do Gene gag/imunologia , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/imunologia , Humanos , Macaca mulatta , Rhadinovirus/genética , Rhadinovirus/imunologia , Vacinas contra a SAIDS/genética , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
3.
PLoS Pathog ; 15(9): e1008015, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31568531

RESUMO

A prophylactic vaccine against human immunodeficiency virus (HIV) remains a top priority in biomedical research. Given the failure of conventional immunization protocols to confer robust protection against HIV, new and unconventional approaches may be needed to generate protective anti-HIV immunity. Here we vaccinated rhesus macaques (RMs) with a recombinant (r)DNA prime (without any exogenous adjuvant), followed by a booster with rhesus monkey rhadinovirus (RRV)-a herpesvirus that establishes persistent infection in RMs (Group 1). Both the rDNA and rRRV vectors encoded a near-full-length simian immunodeficiency virus (SIVnfl) genome that assembles noninfectious SIV particles and expresses all nine SIV gene products. This rDNA/rRRV-SIVnfl vaccine regimen induced persistent anti-Env antibodies and CD8+ T-cell responses against the entire SIV proteome. Vaccine efficacy was assessed by repeated, marginal-dose, intrarectal challenges with SIVmac239. Encouragingly, vaccinees in Group 1 acquired SIVmac239 infection at a significantly delayed rate compared to unvaccinated controls (Group 3). In an attempt to improve upon this outcome, a separate group of rDNA/rRRV-SIVnfl-vaccinated RMs (Group 2) was treated with a cytotoxic T-lymphocyte antigen-4 (CTLA-4)-blocking monoclonal antibody during the vaccine phase and then challenged in parallel with Groups 1 and 3. Surprisingly, Group 2 was not significantly protected against SIVmac239 infection. In sum, SIVnfl vaccination can protect RMs against rigorous mucosal challenges with SIVmac239, a feat that until now had only been accomplished by live-attenuated strains of SIV. Further work is needed to identify the minimal requirements for this protection and whether SIVnfl vaccine efficacy can be improved by means other than anti-CTLA-4 adjuvant therapy.


Assuntos
Vacinas contra a SAIDS/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Animais , Anticorpos Antivirais/metabolismo , Especificidade de Anticorpos , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/antagonistas & inibidores , Feminino , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Esquemas de Imunização , Imunização Secundária , Macaca mulatta , Masculino , Reto/imunologia , Reto/virologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/patogenicidade , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
4.
Proc Natl Acad Sci U S A ; 116(5): 1739-1744, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30642966

RESUMO

The biological characteristics of HIV pose serious difficulties for the success of a preventive vaccine. Molecularly cloned SIVmac239 is difficult for antibodies to neutralize, and a variety of vaccine approaches have had great difficulty achieving protective immunity against it in rhesus monkey models. Here we report significant protection against i.v. acquisition of SIVmac239 using a long-lasting approach to vaccination. The vaccine regimen includes a replication-competent herpesvirus engineered to contain a near-full-length SIV genome that expresses all nine SIV gene products, assembles noninfectious SIV virion particles, and is capable of eliciting long-lasting effector-memory cellular immune responses to all nine SIV gene products. Vaccinated monkeys were significantly protected against acquisition of SIVmac239 following repeated marginal dose i.v. challenges over a 4-month period. Further work is needed to define the critical components necessary for eliciting this protective immunity, evaluate the breadth of the protection against a variety of strains, and explore how this approach may be extended to human use.


Assuntos
Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Células Cultivadas , Herpesviridae/imunologia , Macaca mulatta , Vacinação/métodos , Vírion/imunologia , Replicação Viral/imunologia
5.
PLoS Pathog ; 14(6): e1007143, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29912986

RESUMO

The properties of the human immunodeficiency virus (HIV) pose serious difficulties for the development of an effective prophylactic vaccine. Here we describe the construction and characterization of recombinant (r), replication-competent forms of rhesus monkey rhadinovirus (RRV), a gamma-2 herpesvirus, containing a near-full-length (nfl) genome of the simian immunodeficiency virus (SIV). A 306-nucleotide deletion in the pol gene rendered this nfl genome replication-incompetent as a consequence of deletion of the active site of the essential reverse transcriptase enzyme. Three variations were constructed to drive expression of the SIV proteins: one with SIV's own promoter region, one with a cytomegalovirus (cmv) immediate-early promoter/enhancer region, and one with an RRV dual promoter (p26 plus PAN). Following infection of rhesus fibroblasts in culture with these rRRV vectors, synthesis of the early protein Nef and the late structural proteins Gag and Env could be demonstrated. Expression levels of the SIV proteins were highest with the rRRV-SIVcmv-nfl construct. Electron microscopic examination of rhesus fibroblasts infected with rRRV-SIVcmv-nfl revealed numerous budding and mature SIV particles and these infected cells released impressive levels of p27 Gag protein (>150 ng/ml) into the cell-free supernatant. The released SIV particles were shown to be incompetent for replication. Monkeys inoculated with rRRV-SIVcmv-nfl became persistently infected, made readily-detectable antibodies against SIV, and developed T-cell responses against all nine SIV gene products. Thus, rRRV expressing a near-full-length SIV genome mimics live-attenuated strains of SIV in several important respects: the infection is persistent; >95% of the SIV proteome is naturally expressed; SIV particles are formed; and CD8+ T-cell responses are maintained indefinitely in an effector-differentiated state. Although the magnitude of anti-SIV immune responses in monkeys infected with rRRV-SIVcmv-nfl falls short of what is seen with live-attenuated SIV infection, further experimentation seems warranted.


Assuntos
Gammaherpesvirinae/imunologia , Vetores Genéticos/imunologia , Genoma Viral/imunologia , Infecções por Herpesviridae/imunologia , Vírus da Imunodeficiência Símia/imunologia , Proteínas Virais/imunologia , Vírion/imunologia , Animais , Gammaherpesvirinae/genética , Vetores Genéticos/genética , Infecções por Herpesviridae/virologia , Humanos , Imunidade Celular , Macaca mulatta , Proteínas Virais/genética , Vírion/genética
6.
J Virol ; 91(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28592531

RESUMO

Research on vaccine approaches that can provide long-term protection against dengue virus infection is needed. Here we describe the construction, immunogenicity, and preliminary information on the protective capacity of recombinant, replication-competent rhesus monkey rhadinovirus (RRV), a persisting herpesvirus. One RRV construct expressed nonstructural protein 5 (NS5), while a second recombinant expressed a soluble variant of the E protein (E85) of dengue virus 2 (DENV2). Four rhesus macaques received a single vaccination with a mixture of both recombinant RRVs and were subsequently challenged 19 weeks later with 1 × 105 PFU of DENV2. During the vaccine phase, plasma of all vaccinated monkeys showed neutralizing activity against DENV2. Cellular immune responses against NS5 were also elicited, as evidenced by major histocompatibility complex class I (MHC-I) tetramer staining in the one vaccinated monkey that was Mamu-A*01 positive. Unlike two of two unvaccinated controls, two of the four vaccinated monkeys showed no detectable viral RNA sequences in plasma after challenge. One of these two monkeys also showed no anamnestic increases in antibody levels following challenge and thus appeared to be protected against the acquisition of DENV2 following high-dose challenge. Continued study will be needed to evaluate the performance of herpesviral and other persisting vectors for achieving long-term protection against dengue virus infection.IMPORTANCE Continuing studies of vaccine approaches against dengue virus (DENV) infection are warranted, particularly ones that may provide long-term immunity against all four serotypes. Here we investigated whether recombinant rhesus monkey rhadinovirus (RRV) could be used as a vaccine against DENV2 infection in rhesus monkeys. Upon vaccination, all animals generated antibodies capable of neutralizing DENV2. Two of four vaccinated monkeys showed no detectable viral RNA after subsequent high-dose DENV2 challenge at 19 weeks postvaccination. Furthermore, one of these vaccinated monkeys appeared to be protected against the acquisition of DENV2 infection on the basis of undetectable viral loads and the lack of an anamnestic antibody response. These findings underscore the potential utility of recombinant herpesviruses as vaccine vectors.


Assuntos
Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Dengue/prevenção & controle , Portadores de Fármacos , Herpesviridae/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/genética , Vírus da Dengue/genética , Modelos Animais de Doenças , Imunidade Celular , Macaca mulatta , RNA Viral/sangue , Resultado do Tratamento , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Viremia/prevenção & controle
7.
Proc Natl Acad Sci U S A ; 112(45): 14030-5, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26504241

RESUMO

The glycoproteins of herpesviruses and of HIV/SIV are made late in the replication cycle and are derived from transcripts that use an unusual codon usage that is quite different from that of the host cell. Here we show that the actions of natural transinducers from these two different families of persistent viruses (Rev of SIV and ORF57 of the rhesus monkey rhadinovirus) are dependent on the nature of the skewed codon usage. In fact, the transinducibility of expression of these glycoproteins by Rev and by ORF57 can be flipped simply by changing the nature of the codon usage. Even expression of a luciferase reporter could be made Rev dependent or ORF57 dependent by distinctive changes to its codon usage. Our findings point to a new general principle in which different families of persisting viruses use a poor codon usage that is skewed in a distinctive way to temporally regulate late expression of structural gene products.


Assuntos
Códon/genética , Regulação Viral da Expressão Gênica/fisiologia , Proteínas Virais Reguladoras e Acessórias/genética , Sequência de Bases , Primers do DNA/genética , DNA Complementar/genética , Regulação Viral da Expressão Gênica/genética , Células HEK293 , Humanos , Luciferases , Dados de Sequência Molecular , Plasmídeos/genética , Alinhamento de Sequência , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA