Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 6315, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428783

RESUMO

Entomopathogenic fungi have been explored as a potential biopesticide to counteract the insecticide resistance issue in mosquitoes. However, little is known about the possibility that genetic resistance to fungal biopesticides could evolve in mosquito populations. Here, we detected an important genetic component underlying Anopheles coluzzii survival after exposure to the entomopathogenic fungus Metarhizium anisopliae. A familiality study detected variation for survival among wild mosquito isofemale pedigrees, and genetic mapping identified two loci that significantly influence mosquito survival after fungus exposure. One locus overlaps with a previously reported locus for Anopheles susceptibility to the human malaria parasite Plasmodium falciparum. Candidate gene studies revealed that two LRR proteins encoded by APL1C and LRIM1 genes in this newly mapped locus are required for protection of female A. coluzzii from M. anisopliae, as is the complement-like factor Tep1. These results indicate that natural Anopheles populations already segregate frequent genetic variation for differential mosquito survival after fungal challenge and suggest a similarity in Anopheles protective responses against fungus and Plasmodium. However, this immune similarity raises the possibility that fungus-resistant mosquitoes could also display enhanced resistance to Plasmodium, suggesting an advantage of selecting for fungus resistance in vector populations to promote naturally diminished malaria vector competence.


Assuntos
Anopheles , Malária , Metarhizium , Plasmodium , Animais , Anopheles/parasitologia , Feminino , Humanos , Metarhizium/genética , Mosquitos Vetores/genética
2.
Front Genet ; 12: 785934, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35082832

RESUMO

Almost all regulation of gene expression in eukaryotic genomes is mediated by the action of distant non-coding transcriptional enhancers upon proximal gene promoters. Enhancer locations cannot be accurately predicted bioinformatically because of the absence of a defined sequence code, and thus functional assays are required for their direct detection. Here we used a massively parallel reporter assay, Self-Transcribing Active Regulatory Region sequencing (STARR-seq), to generate the first comprehensive genome-wide map of enhancers in Anopheles coluzzii, a major African malaria vector in the Gambiae species complex. The screen was carried out by transfecting reporter libraries created from the genomic DNA of 60 wild A. coluzzii from Burkina Faso into A. coluzzii 4a3A cells, in order to functionally query enhancer activity of the natural population within the homologous cellular context. We report a catalog of 3,288 active genomic enhancers that were significant across three biological replicates, 74% of them located in intergenic and intronic regions. The STARR-seq enhancer screen is chromatin-free and thus detects inherent activity of a comprehensive catalog of enhancers that may be restricted in vivo to specific cell types or developmental stages. Testing of a validation panel of enhancer candidates using manual luciferase assays confirmed enhancer function in 26 of 28 (93%) of the candidates over a wide dynamic range of activity from two to at least 16-fold activity above baseline. The enhancers occupy only 0.7% of the genome, and display distinct composition features. The enhancer compartment is significantly enriched for 15 transcription factor binding site signatures, and displays divergence for specific dinucleotide repeats, as compared to matched non-enhancer genomic controls. The genome-wide catalog of A. coluzzii enhancers is publicly available in a simple searchable graphic format. This enhancer catalogue will be valuable in linking genetic and phenotypic variation, in identifying regulatory elements that could be employed in vector manipulation, and in better targeting of chromosome editing to minimize extraneous regulation influences on the introduced sequences. Importance: Understanding the role of the non-coding regulatory genome in complex disease phenotypes is essential, but even in well-characterized model organisms, identification of regulatory regions within the vast non-coding genome remains a challenge. We used a large-scale assay to generate a genome wide map of transcriptional enhancers. Such a catalogue for the important malaria vector, Anopheles coluzzii, will be an important research tool as the role of non-coding regulatory variation in differential susceptibility to malaria infection is explored and as a public resource for research on this important insect vector of disease.

3.
Front Microbiol ; 11: 306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174902

RESUMO

The commensal gut microbiome is contained by the enteric epithelial barrier, but little is known about the degree of specificity of host immune barrier interactions for particular bacterial taxa. Here, we show that depletion of leucine-rich repeat immune factor APL1 in the Asian malaria mosquito Anopheles stephensi is associated with higher midgut abundance of just the family Enterobacteraceae, and not generalized dysbiosis of the microbiome. The effect is explained by the response of a narrow clade containing two main taxa related to Klebsiella and Cedecea. Analysis of field samples indicate that these two taxa are recurrent members of the wild Anopheles microbiome. Triangulation using sequence and functional data incriminated relatives of C. neteri and Cedecea NFIX57 as candidates for the Cedecea component, and K. michiganensis, K. oxytoca, and K.sp. LTGPAF-6F as candidates for the Klebsiella component. APL1 presence is associated with host ability to specifically constrain the abundance of a narrow microbiome clade of the Enterobacteraceae, and the immune factor may promote homeostasis of this clade in the enteric microbiome for host benefit.

4.
Parasit Vectors ; 13(1): 18, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931885

RESUMO

BACKGROUND: The recent reference genome assembly and annotation of the Asian malaria vector Anopheles stephensi detected only one gene encoding the leucine-rich repeat immune factor APL1, while in the Anopheles gambiae and sibling Anopheles coluzzii, APL1 factors are encoded by a family of three paralogs. The phylogeny and biological function of the unique APL1 gene in An. stephensi have not yet been specifically examined. METHODS: The APL1 locus was manually annotated to confirm the computationally predicted single APL1 gene in An. stephensi. APL1 evolution within Anopheles was explored by phylogenomic analysis. The single or paralogous APL1 genes were silenced in An. stephensi and An. coluzzii, respectively, followed by mosquito survival analysis, experimental infection with Plasmodium and expression analysis. RESULTS: APL1 is present as a single ancestral gene in most Anopheles including An. stephensi but has expanded to three paralogs in an African lineage that includes only the Anopheles gambiae species complex and Anopheles christyi. Silencing of the unique APL1 copy in An. stephensi results in significant mosquito mortality. Elevated mortality of APL1-depleted An. stephensi is rescued by antibiotic treatment, suggesting that pathology due to bacteria is the cause of mortality, and indicating that the unique APL1 gene is essential for host survival. Successful Plasmodium development in An. stephensi depends upon APL1 activity for protection from high host mortality due to bacteria. In contrast, silencing of all three APL1 paralogs in An. coluzzii does not result in elevated mortality, either with or without Plasmodium infection. Expression of the single An. stephensi APL1 gene is regulated by both the Imd and Toll immune pathways, while the two signaling pathways regulate different APL1 paralogs in the expanded APL1 locus. CONCLUSIONS: APL1 underwent loss and gain of functions concomitant with expansion from a single ancestral gene to three paralogs in one lineage of African Anopheles. We infer that activity of the unique APL1 gene promotes longevity in An. stephensi by conferring protection from or tolerance to an effect of bacterial pathology. The evolution of an expanded APL1 gene family could be a factor contributing to the exceptional levels of malaria transmission mediated by human-feeding members of the An. gambiae species complex in Africa.


Assuntos
Anopheles/genética , Chaperonina 60/genética , Fatores Imunológicos/genética , Fragmentos de Peptídeos/genética , Animais , Anopheles/imunologia , Evolução Molecular , Dosagem de Genes , Proteínas de Insetos/genética , Insetos Vetores/genética , Longevidade/genética , Malária/imunologia , Malária/transmissão , Filogenia
5.
Sci Rep ; 9(1): 15275, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31649293

RESUMO

Enhancers are cis-regulatory elements that control most of the developmental and spatial gene expression in eukaryotes. Genetic variation of enhancer sequences is known to influence phenotypes, but the effect of enhancer variation upon enhancer functional activity and downstream phenotypes has barely been examined in any species. In the African malaria vector, Anopheles coluzzii, we identified candidate enhancers in the proximity of genes relevant for immunity, insecticide resistance, and development. The candidate enhancers were functionally validated using luciferase reporter assays, and their activity was found to be essentially independent of their physical orientation, a typical property of enhancers. All of the enhancers segregated genetically polymorphic alleles, which displayed significantly different levels of functional activity. Deletion mutagenesis and functional testing revealed a fine structure of positive and negative regulatory elements that modulate activity of the enhancer core. Enhancer polymorphisms segregate in wild A. coluzzii populations in West Africa. Thus, enhancer variants that modify target gene expression leading to likely phenotypic consequences are frequent in nature. These results demonstrate the existence of naturally polymorphic A. coluzzii enhancers, which may help explain important differences between individuals or populations for malaria transmission efficiency and vector adaptation to the environment.


Assuntos
Anopheles/genética , Elementos Facilitadores Genéticos , Resistência a Inseticidas/genética , Mosquitos Vetores/genética , Polimorfismo Genético , Animais , Anopheles/efeitos dos fármacos , Inseticidas/farmacologia , Malária/transmissão , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos
6.
Sci Rep ; 9(1): 6319, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-31004099

RESUMO

Mosquitoes are colonized by a little-studied natural virome. Like the bacterial microbiome, the virome also probably influences the biology and immunity of mosquito vector populations, but tractable experimental models are lacking. We recently discovered two novel viruses in the virome of wild Anopheles and in colonies of the malaria vector Anopheles coluzzii: Anopheles C virus and Anopheles cypovirus. Here, we describe biological interactions between these two viruses and An. coluzzii mosquitoes. Viral abundance varies reproducibly during mosquito development. DNA forms of these viruses were not detected, and thus viral persistence is likely based on vertical transmission of RNA genomes. At least Anopheles C virus is vertically transmitted by an intraembryonic route. Relative abundance of the two viruses is inversely correlated in individual mosquitoes. One possible mechanism for this could be interactions with host immunity, and functional genomic analysis indicated differential influence of at least the Toll and JAK/STAT immune signaling pathways upon the viruses. The nonrandom distributions and interactions with host immunity suggest that these and other members of the natural virome may constitute a source of unrecognized heterogeneity in mosquito vector populations.


Assuntos
Anopheles , Genoma Viral , Mosquitos Vetores , Vírus de RNA/metabolismo , Animais , Anopheles/embriologia , Anopheles/virologia , Malária , Mosquitos Vetores/embriologia , Mosquitos Vetores/virologia , Vírus de RNA/genética
7.
Sci Rep ; 9(1): 4669, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874601

RESUMO

Human malaria, which remains a major public health problem, is transmitted by a subset of Anopheles mosquitoes belonging to only three out of eight subgenera: Anopheles, Cellia and Nyssorhynchus. Unlike almost every other insect species, males of some Anopheles species produce steroid hormones which are transferred to females during copulation to influence their reproduction. Steroids are consequently a potential target for malaria vector control. Here, we analysed the evolution of sexually-transferred steroids and their effects on female reproductive traits across Anopheles by using a set of 16 mosquito species (five Anopheles, eight Cellia, and three Nyssorhynchus), including malaria vector and non-vector species. We show that male steroid production and transfer are specific to the Cellia and therefore represent a synapomorphy of this subgenus. Furthermore, we show that mating-induced effects in females are variable across species and differences are not correlated with sexually-transferred steroids or with Anopheles ability to transmit human malaria. Overall, our findings highlight that Anopheles mosquitoes have evolved different reproductive strategies, independently of being a malaria vector or not.


Assuntos
Anopheles/genética , Hormônios Esteroides Gonadais/metabolismo , Comportamento Sexual Animal/fisiologia , Animais , Anopheles/metabolismo , Evolução Biológica , Copulação/fisiologia , Evolução Molecular , Feminino , Hormônios/metabolismo , Insetos Vetores/genética , Malária/transmissão , Masculino , Mosquitos Vetores/genética , Reprodução , Especificidade da Espécie , Esteroides/metabolismo
8.
Elife ; 62017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28643631

RESUMO

Chromosome inversions suppress genetic recombination and establish co-adapted gene complexes, or supergenes. The 2La inversion is a widespread polymorphism in the Anopheles gambiae species complex, the major African mosquito vectors of human malaria. Here we show that alleles of the 2La inversion are associated with natural malaria infection levels in wild-captured vectors from West and East Africa. Mosquitoes carrying the more-susceptible allele (2L+a) are also behaviorally less likely to be found inside houses. Vector control tools that target indoor-resting mosquitoes, such as bednets and insecticides, are currently the cornerstone of malaria control in Africa. Populations with high levels of the 2L+a allele may form reservoirs of persistent outdoor malaria transmission requiring novel measures for surveillance and control. The 2La inversion is a major and previously unappreciated component of the natural malaria transmission system in Africa, influencing both malaria susceptibility and vector behavior.


Assuntos
Anopheles/genética , Anopheles/parasitologia , Inversão Cromossômica , Cromossomos de Insetos , Mosquitos Vetores/genética , Mosquitos Vetores/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , África , Animais , Comportamento Animal , Interações Hospedeiro-Parasita , Humanos , Malária/transmissão
9.
PLoS Negl Trop Dis ; 11(3): e0005416, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28248955

RESUMO

Tick-borne rickettsiae are considered to be emerging, but data about their presence in western Europe are scarce. Ixodes ricinus ticks, the most abundant and widespread tick species in western Europe, were collected and tested for the presence of several tick-borne pathogens in western France, a region never previously explored in this context. There was a high tick abundance with a mean of 4 females, 4.5 males, and 23.3 nymphs collected per hour per collector. Out of 622 tested ticks, specific PCR amplification showed the presence of tick symbionts as well as low prevalence of Borrelia burgdorferi (0.8%), Bartonella spp. (0.17%), and Anaplasma phagocytophilum (0.09%). The most prevalent pathogen was Rickettsia helvetica (4.17%). This is the first time that this bacteria has been detected in ticks in this region, and this result raises the possibility that bacteria other than those classically implicated may be involved in rickettsial diseases in western France.


Assuntos
Ixodes/microbiologia , Rickettsia/isolamento & purificação , Anaplasma phagocytophilum/genética , Anaplasma phagocytophilum/isolamento & purificação , Animais , Bartonella/genética , Bartonella/isolamento & purificação , Borrelia burgdorferi/genética , Borrelia burgdorferi/isolamento & purificação , Feminino , Florestas , França , Masculino , Ninfa/microbiologia , Reação em Cadeia da Polimerase , Rickettsia/genética
11.
PLoS One ; 11(5): e0153881, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27138938

RESUMO

Mosquitoes of the Anopheles gambiae complex display strong preference for human bloodmeals and are major malaria vectors in Africa. However, their interaction with viruses or role in arbovirus transmission during epidemics has been little examined, with the exception of O'nyong-nyong virus, closely related to Chikungunya virus. Deep-sequencing has revealed different RNA viruses in natural insect viromes, but none have been previously described in the Anopheles gambiae species complex. Here, we describe two novel insect RNA viruses, a Dicistrovirus and a Cypovirus, found in laboratory colonies of An. gambiae taxa using small-RNA deep sequencing. Sequence analysis was done with Metavisitor, an open-source bioinformatic pipeline for virus discovery and de novo genome assembly. Wild-collected Anopheles from Senegal and Cambodia were positive for the Dicistrovirus and Cypovirus, displaying high sequence identity to the laboratory-derived virus. Thus, the Dicistrovirus (Anopheles C virus, AnCV) and Cypovirus (Anopheles Cypovirus, AnCPV) are components of the natural virome of at least some anopheline species. Their possible influence on mosquito immunity or transmission of other pathogens is unknown. These natural viruses could be developed as models for the study of Anopheles-RNA virus interactions in low security laboratory settings, in an analogous manner to the use of rodent malaria parasites for studies of mosquito anti-parasite immunity.


Assuntos
Anopheles/virologia , Dicistroviridae/isolamento & purificação , Dicistroviridae/fisiologia , Reoviridae/isolamento & purificação , Reoviridae/fisiologia , Animais , Especificidade de Hospedeiro , Filogenia
12.
Mol Ecol ; 25(7): 1494-510, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26846876

RESUMO

The recent discovery of a previously unknown genetic subgroup of Anopheles gambiae sensu lato underscores our incomplete understanding of complexities of vector population demographics in Anopheles. This subgroup, named GOUNDRY, does not rest indoors as adults and is highly susceptible to Plasmodium infection in the laboratory. Initial description of GOUNDRY suggested it differed from other known Anopheles taxa in surprising and sometimes contradictory ways, raising a number of questions about its age, population size and relationship to known subgroups. To address these questions, we sequenced the complete genomes of 12 wild-caught GOUNDRY specimens and compared these genomes to a panel of Anopheles genomes. We show that GOUNDRY is most closely related to Anopheles coluzzii, and the timing of cladogenesis is not recent, substantially predating the advent of agriculture. We find a large region of the X chromosome that has swept to fixation in GOUNDRY within the last 100 years, which may be an inversion that serves as a partial barrier to contemporary gene flow. Interestingly, we show that GOUNDRY has a history of inbreeding that is significantly associated with susceptibility to Plasmodium infection in the laboratory. Our results illuminate the genomic evolution of one of probably several cryptic, ecologically specialized subgroups of Anopheles and provide a potent example of how vector population dynamics may complicate efforts to control or eradicate malaria.


Assuntos
Anopheles/genética , Evolução Molecular , Genoma de Inseto , Plasmodium falciparum , Animais , Anopheles/parasitologia , Inversão Cromossômica , Fluxo Gênico , Especiação Genética , Genética Populacional , Endogamia , Insetos Vetores/genética , Insetos Vetores/parasitologia , Polimorfismo de Nucleotídeo Único , Dinâmica Populacional , Análise de Sequência de DNA , Cromossomo X/genética
13.
PLoS One ; 11(1): e0145308, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26731649

RESUMO

Members of the Anopheles gambiae species complex are primary vectors of human malaria in Africa. Population heterogeneities for ecological and behavioral attributes expand and stabilize malaria transmission over space and time, and populations may change in response to vector control, urbanization and other factors. There is a need for approaches to comprehensively describe the structure and characteristics of a sympatric local mosquito population, because incomplete knowledge of vector population composition may hinder control efforts. To this end, we used a genome-wide custom SNP typing array to analyze a population collection from a single geographic region in West Africa. The combination of sample depth (n = 456) and marker density (n = 1536) unambiguously resolved population subgroups, which were also compared for their relative susceptibility to natural genotypes of Plasmodium falciparum malaria. The population subgroups display fluctuating patterns of differentiation or sharing across the genome. Analysis of linkage disequilibrium identified 19 new candidate genes for association with underlying population divergence between sister taxa, A. coluzzii (M-form) and A. gambiae (S-form).


Assuntos
Anopheles/genética , Estruturas Genéticas , Genoma de Inseto/genética , Insetos Vetores/genética , Polimorfismo de Nucleotídeo Único , Animais , Anopheles/classificação , Burkina Faso/epidemiologia , Genética Populacional/métodos , Genótipo , Geografia , Humanos , Insetos Vetores/classificação , Desequilíbrio de Ligação , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Filogenia , Dinâmica Populacional , Especificidade da Espécie
14.
PLoS Pathog ; 11(12): e1005306, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26633695

RESUMO

Nucleotide variation patterns across species are shaped by the processes of natural selection, including exposure to environmental pathogens. We examined patterns of genetic variation in two sister species, Anopheles gambiae and Anopheles coluzzii, both efficient natural vectors of human malaria in West Africa. We used the differentiation signature displayed by a known coordinate selective sweep of immune genes APL1 and TEP1 in A. coluzzii to design a population genetic screen trained on the sweep, classified a panel of 26 potential immune genes for concordance with the signature, and functionally tested their immune phenotypes. The screen results were strongly predictive for genes with protective immune phenotypes: genes meeting the screen criteria were significantly more likely to display a functional phenotype against malaria infection than genes not meeting the criteria (p = 0.0005). Thus, an evolution-based screen can efficiently prioritize candidate genes for labor-intensive downstream functional testing, and safely allow the elimination of genes not meeting the screen criteria. The suite of immune genes with characteristics similar to the APL1-TEP1 selective sweep appears to be more widespread in the A. coluzzii genome than previously recognized. The immune gene differentiation may be a consequence of adaptation of A. coluzzii to new pathogens encountered in its niche expansion during the separation from A. gambiae, although the role, if any of natural selection by Plasmodium is unknown. Application of the screen allowed identification of new functional immune factors, and assignment of new functions to known factors. We describe biochemical binding interactions between immune proteins that underlie functional activity for malaria infection, which highlights the interplay between pathogen specificity and the structure of immune complexes. We also find that most malaria-protective immune factors display phenotypes for either human or rodent malaria, with broad specificity a rarity.


Assuntos
Anopheles/genética , Anopheles/imunologia , Insetos Vetores/genética , Insetos Vetores/imunologia , Animais , Sequência de Bases , Evolução Molecular , Genes de Insetos/imunologia , Variação Genética , Proteínas de Insetos/genética , Proteínas de Insetos/imunologia , Malária/transmissão , Camundongos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase
15.
Malar J ; 14: 391, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26445487

RESUMO

BACKGROUND: Members of the Anopheles gambiae species complex are primary vectors of human malaria in Africa. It is known that a large haplotype shared between An. gambiae and Anopheles coluzzii by introgression carries point mutations of the voltage-gated sodium channel gene para, including the L1014F kdr mutation associated with insensitivity to pyrethroid insecticides. Carriage of L1014F kdr is also correlated with higher susceptibility to infection with Plasmodium falciparum. However, the genetic mechanism and causative gene(s) underlying the parasite susceptibility phenotype are not known. METHODS: Mosquitoes from the wild Burkina Faso population were challenged by feeding on natural P. falciparum gametocytes. Oocyst infection phenotypes were determined and were tested for association with SNP genotypes. Candidate genes in the detected locus were prioritized and RNAi-mediated gene silencing was used to functionally test for gene effects on P. falciparum susceptibility. RESULTS: A genetic locus, Pfin6, was identified that influences infection levels of P. falciparum in mosquitoes. The locus segregates as a ~3 Mb haplotype carrying 65 predicted genes including the para gene. The haplotype carrying the kdr allele of para is linked to increased parasite infection prevalence, but many single nucleotide polymorphisms on the haplotype are also equally linked to the infection phenotype. Candidate genes in the haplotype were prioritized and functionally tested. Silencing of para did not influence P. falciparum infection, while silencing of a predicted immune gene, serine protease ClipC9, allowed development of significantly increased parasite numbers. CONCLUSIONS: Genetic variation influencing Plasmodium infection in wild Anopheles is linked to a natural ~3 megabase haplotype on chromosome 2L that carries the kdr allele of the para gene. Evidence suggests that para gene function does not directly influence parasite susceptibility, and the association of kdr with infection may be due to tight linkage of kdr with other gene(s) on the haplotype. Further work will be required to determine if ClipC9 influences the outcome of P. falciparum infection in nature, as well as to confirm the absence of a direct influence by para.


Assuntos
Anopheles/genética , Anopheles/parasitologia , Loci Gênicos , Haplótipos , Resistência a Inseticidas , Plasmodium falciparum/crescimento & desenvolvimento , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Animais , Anopheles/imunologia , Burkina Faso , Feminino , Ligação Genética , Plasmodium falciparum/imunologia
17.
Proc Natl Acad Sci U S A ; 112(2): E176-85, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548172

RESUMO

Arboviruses are transmitted by mosquitoes and other arthropods to humans and animals. The risk associated with these viruses is increasing worldwide, including new emergence in Europe and the Americas. Anopheline mosquitoes are vectors of human malaria but are believed to transmit one known arbovirus, o'nyong-nyong virus, whereas Aedes mosquitoes transmit many. Anopheles interactions with viruses have been little studied, and the initial antiviral response in the midgut has not been examined. Here, we determine the antiviral immune pathways of the Anopheles gambiae midgut, the initial site of viral infection after an infective blood meal. We compare them with the responses of the post-midgut systemic compartment, which is the site of the subsequent disseminated viral infection. Normal viral infection of the midgut requires bacterial flora and is inhibited by the activities of immune deficiency (Imd), JAK/STAT, and Leu-rich repeat immune factors. We show that the exogenous siRNA pathway, thought of as the canonical mosquito antiviral pathway, plays no detectable role in antiviral defense in the midgut but only protects later in the systemic compartment. These results alter the prevailing antiviral paradigm by describing distinct protective mechanisms in different body compartments and infection stages. Importantly, the presence of the midgut bacterial flora is required for full viral infectivity to Anopheles, in contrast to malaria infection, where the presence of the midgut bacterial flora is required for protection against infection. Thus, the enteric flora controls a reciprocal protection tradeoff in the vector for resistance to different human pathogens.


Assuntos
Anopheles/imunologia , Anopheles/virologia , Arbovírus/imunologia , Arbovírus/patogenicidade , Infecções por Alphavirus/imunologia , Infecções por Alphavirus/transmissão , Animais , Anopheles/genética , Infecções por Arbovirus/imunologia , Infecções por Arbovirus/transmissão , Arbovírus/genética , Sistema Digestório/imunologia , Sistema Digestório/microbiologia , Sistema Digestório/virologia , Feminino , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Insetos Vetores/genética , Insetos Vetores/imunologia , Insetos Vetores/virologia , Janus Quinases/imunologia , Microbiota , Vírus O'nyong-nyong/genética , Vírus O'nyong-nyong/imunologia , Vírus O'nyong-nyong/patogenicidade , Plasmodium falciparum/imunologia , Plasmodium falciparum/patogenicidade , Interferência de RNA , RNA Interferente Pequeno/genética , Fatores de Transcrição STAT/imunologia , Transdução de Sinais/imunologia
18.
PLoS One ; 9(12): e114401, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25479608

RESUMO

The mechanisms underlying the heterogeneity of clinical malaria remain largely unknown. We hypothesized that differential gene expression contributes to phenotypic variation of parasites which results in a specific interaction with the host, leading to different clinical features of malaria. In this study, we analyzed the transcriptomes of isolates obtained from asymptomatic carriers and patients with uncomplicated or cerebral malaria. We also investigated the transcriptomes of 3D7 clone and 3D7-Lib that expresses severe malaria associated-variant surface antigen. Our findings revealed a specific up-regulation of genes involved in pathogenesis, adhesion to host cell, and erythrocyte aggregation in parasites from patients with cerebral malaria and 3D7-Lib, compared to parasites from asymptomatic carriers and 3D7, respectively. However, we did not find any significant difference between the transcriptomes of parasites from cerebral malaria and uncomplicated malaria, suggesting similar transcriptomic pattern in these two parasite populations. The difference between isolates from asymptomatic children and cerebral malaria concerned genes coding for exported proteins, Maurer's cleft proteins, transcriptional factor proteins, proteins implicated in protein transport, as well as Plasmodium conserved and hypothetical proteins. Interestingly, UPs A1, A2, A3 and UPs B1 of var genes were predominantly found in cerebral malaria-associated isolates and those containing architectural domains of DC4, DC5, DC13 and their neighboring rif genes in 3D7-lib. Therefore, more investigations are needed to analyze the effective role of these genes during malaria infection to provide with new knowledge on malaria pathology. In addition, concomitant regulation of genes within the chromosomal neighborhood suggests a common mechanism of gene regulation in P. falciparum.


Assuntos
Regulação da Expressão Gênica , Malária Cerebral/metabolismo , Malária Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/biossíntese , Transcriptoma , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino
19.
EMBO Mol Med ; 6(11): 1387-97, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25257508

RESUMO

The malaria parasite, Plasmodium, requires iron for growth, but how it imports iron remains unknown. We characterize here a protein that belongs to the ZIP (Zrt-, Irt-like Protein) family of metal ion transport proteins and have named ZIP domain-containing protein (ZIPCO). Inactivation of the ZIPCO-encoding gene in Plasmodium berghei, while not affecting the parasite's ability to multiply in mouse blood and to infect mosquitoes, greatly impairs its capacity to develop inside hepatocytes. Iron/zinc supplementation and depletion experiments suggest that ZIPCO is required for parasite utilization of iron and possibly zinc, consistent with its predicted function as a metal transporter. This is the first report of a ZIP protein having a crucial role in Plasmodium liver-stage development, as well as the first metal ion transporter identified in Plasmodium pre-erythrocytic stages. Because of the drastic dependence on iron of Plasmodium growth, ZIPCO and related proteins might constitute attractive drug targets to fight against malaria.


Assuntos
Ferro/metabolismo , Fígado/parasitologia , Malária/parasitologia , Proteínas de Membrana Transportadoras/metabolismo , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Sequência de Aminoácidos , Animais , Anopheles , Feminino , Técnicas de Inativação de Genes , Células Hep G2 , Hepatócitos/parasitologia , Humanos , Íons/metabolismo , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Filogenia , Plasmodium berghei/genética , Homologia de Sequência de Aminoácidos , Zinco/metabolismo
20.
Exp Parasitol ; 133(1): 51-6, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23103717

RESUMO

Babesiosis is a tick-transmitted disease of mammalian hosts, caused by the intraerythrocytic protozoan parasites of the genus Babesia. Transmission of Babesia parasites from the vertebrate host to the tick is mediated by sexual stages, the gametocytes which are the only intraerythrocytic stages that survive and develop inside the vector. Very few data are available concerning these parasite stages and some markers are needed in order to refine our knowledge of Babesia life cycle inside the tick and to permit the monitoring of parasite transmission from vertebrate to vector. We previously identified some potential markers of the Babesia divergens gametocytes using an in silico post-genomic approach based on sequence identity between the available genomes of Plasmodium and Babesia spp. Here, one of the identified proteins, BdCCp2, was validated as a marker of sexual stages of B. divergens, in infected ticks challenged with antisera directed against recombinant BdCCp2 protein. The BdCCp2 protein was detected by Western blot in some infected ticks, as a discrete band of approximately 171 kDa, while no signal was detected in the laboratory-reared non-infected tick. BdCCp2 was also detected, by immunohistochemical analyses, in piriform or ovoid bodies, measuring 2.5-4.5 µm in diameter, in the gut of partially engorged ticks that were experimentally infected. This molecular marker can then be used in the future to characterize and analyze the biology of B. divergens gametocytes.


Assuntos
Vetores Aracnídeos/parasitologia , Proteínas de Artrópodes/análise , Babesia/fisiologia , Precursores Enzimáticos/análise , Ixodes/parasitologia , Serina Endopeptidases/análise , Animais , Anticorpos Antiprotozoários/imunologia , Especificidade de Anticorpos/imunologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Babesia/genética , Babesia/isolamento & purificação , Babesiose/parasitologia , Babesiose/transmissão , Babesiose/veterinária , Biomarcadores/análise , Western Blotting/veterinária , Bovinos , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/transmissão , Eletroforese em Gel de Poliacrilamida/veterinária , Precursores Enzimáticos/genética , Precursores Enzimáticos/imunologia , Eritrócitos/parasitologia , Feminino , Cobaias , Soros Imunes/imunologia , Imuno-Histoquímica/veterinária , Coelhos , Proteínas Recombinantes/biossíntese , Serina Endopeptidases/genética , Serina Endopeptidases/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA