Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6686): eadf0630, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422130

RESUMO

In recent decades, climate change and other anthropogenic activities have substantially affected groundwater systems worldwide. These impacts include changes in groundwater recharge, discharge, flow, storage, and distribution. Climate-induced shifts are evident in altered recharge rates, greater groundwater contribution to streamflow in glacierized catchments, and enhanced groundwater flow in permafrost areas. Direct anthropogenic changes include groundwater withdrawal and injection, regional flow regime modification, water table and storage alterations, and redistribution of embedded groundwater in foods globally. Notably, groundwater extraction contributes to sea level rise, increasing the risk of groundwater inundation in coastal areas. The role of groundwater in the global water cycle is becoming more dynamic and complex. Quantifying these changes is essential to ensure sustainable supply of fresh groundwater resources for people and ecosystems.

2.
Sci Total Environ ; 903: 166157, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572912

RESUMO

The marine habitat beneath Antarctica's ice shelves spans ∼1.6 million km2, and life in this vast and extreme environment is among Earth's least accessible, least disturbed and least known, yet likely to be impacted by climate-forced warming and environmental change. Although competition among biota is a fundamental structuring force of ecological communities, hence ecosystem functions and services, nothing was known of competition for resources under ice shelves, until this study. Boreholes drilled through a âˆ¼ 200 m thick ice shelf enabled collections of novel sub-ice-shelf seabed sediment which contained fragments of biogenic substrata rich in encrusting (lithophilic) macrobenthos, principally bryozoans - a globally-ubiquitous phylum sensitive to environmental change. Analysis of sub-glacial biogenic substrata, by stereo microscopy, provided first evidence of spatial contest competition, enabling generation of a new range of competition measures for the sub-ice-shelf benthic space. Measures were compared with those of global open-water datasets traversing polar, temperate and tropical latitudes (and encompassing both hemispheres). Spatial competition in sub-ice-shelf samples was found to be higher in intensity and severity than all other global means. The likelihood of sub-ice-shelf competition being intraspecific was three times lower than for open-sea polar continental shelf areas, and competition complexity, in terms of the number of different types of competitor pairings, was two-fold higher. As posited for an enduring disturbance minimum, a specific bryozoan clade was especially competitively dominant in sub-ice-shelf samples compared with both contemporary and fossil assemblage records. Overall, spatial competition under an Antarctic ice shelf, as characterised by bryozoan interactions, was strikingly different from that of open-sea polar continental shelf sites, and more closely resembled tropical and temperate latitudes. This study represents the first analysis of sub-ice-shelf macrobenthic spatial competition and provides a new ecological baseline for exploring, monitoring and comparing ecosystem response to environmental change in a warming world.

3.
Glob Chang Biol ; 29(10): 2714-2731, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36811358

RESUMO

Thermokarst lagoons represent the transition state from a freshwater lacustrine to a marine environment, and receive little attention regarding their role for greenhouse gas production and release in Arctic permafrost landscapes. We studied the fate of methane (CH4 ) in sediments of a thermokarst lagoon in comparison to two thermokarst lakes on the Bykovsky Peninsula in northeastern Siberia through the analysis of sediment CH4 concentrations and isotopic signature, methane-cycling microbial taxa, sediment geochemistry, lipid biomarkers, and network analysis. We assessed how differences in geochemistry between thermokarst lakes and thermokarst lagoons, caused by the infiltration of sulfate-rich marine water, altered the microbial methane-cycling community. Anaerobic sulfate-reducing ANME-2a/2b methanotrophs dominated the sulfate-rich sediments of the lagoon despite its known seasonal alternation between brackish and freshwater inflow and low sulfate concentrations compared to the usual marine ANME habitat. Non-competitive methylotrophic methanogens dominated the methanogenic community of the lakes and the lagoon, independent of differences in porewater chemistry and depth. This potentially contributed to the high CH4 concentrations observed in all sulfate-poor sediments. CH4 concentrations in the freshwater-influenced sediments averaged 1.34 ± 0.98 µmol g-1 , with highly depleted δ13 C-CH4 values ranging from -89‰ to -70‰. In contrast, the sulfate-affected upper 300 cm of the lagoon exhibited low average CH4 concentrations of 0.011 ± 0.005 µmol g-1 with comparatively enriched δ13 C-CH4 values of -54‰ to -37‰ pointing to substantial methane oxidation. Our study shows that lagoon formation specifically supports methane oxidizers and methane oxidation through changes in pore water chemistry, especially sulfate, while methanogens are similar to lake conditions.


Assuntos
Sedimentos Geológicos , Microbiota , Metano/análise , Anaerobiose , Lagos , Água/análise , Sulfatos/análise
5.
Commun Biol ; 5(1): 570, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681049

RESUMO

Climate change is expected to cause major shifts in boreal forests which are in vast areas of Siberia dominated by two species of the deciduous needle tree larch (Larix). The species differ markedly in their ecosystem functions, thus shifts in their respective ranges are of global relevance. However, drivers of species distribution are not well understood, in part because paleoecological data at species level are lacking. This study tracks Larix species distribution in time and space using target enrichment on sedimentary ancient DNA extracts from eight lakes across Siberia. We discovered that Larix sibirica, presently dominating in western Siberia, likely migrated to its northern distribution area only in the Holocene at around 10,000 years before present (ka BP), and had a much wider eastern distribution around 33 ka BP. Samples dated to the Last Glacial Maximum (around 21 ka BP), consistently show genotypes of L. gmelinii. Our results suggest climate as a strong determinant of species distribution in Larix and provide temporal and spatial data for species projection in a changing climate.


Assuntos
Larix , DNA Antigo , Ecossistema , Larix/genética , Sibéria , Árvores
6.
Curr Biol ; 31(24): R1566-R1567, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34932962

RESUMO

Where polar ice sheets meet the coast, they can flow into the sea as floating ice shelves. The seabed underneath is in complete darkness, and may be Earth's least known surface habitat. Few taxa there have been fully identified to named species (see Supplemental information) - remarkable for a habitat spanning nearly 1.6 million km2. Glimpses of life there have come from cameras dropped through 10 boreholes, mainly at the three largest Antarctic ice shelves - the Ross (McMurdo), Filchner-Ronne and Amery. Pioneering studies of life under boreholes found distinct morphotypes of perhaps >50 species. Here, we report remarkable growth and persistence over thousands of years of benthic faunal species collected in 2018 from the seabed under the Ekström Ice Shelf (EIS), Weddell Sea.


Assuntos
Ecossistema , Camada de Gelo , Regiões Antárticas
7.
PLoS One ; 15(4): e0230284, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32294095

RESUMO

Large, old and heterogenous lake systems are valuable sources of biodiversity. The analysis of current spatial variability within such lakes increases our understanding of the origin and establishment of biodiversity. The environmental sensitivity and the high taxonomic richness of diatoms make them ideal organisms to investigate intra-lake variability. We investigated modern intra-lake diatom diversity in the large and old sub-arctic Lake Bolshoe Toko in Siberia. Our study uses diatom-specific metabarcoding, applying a short rbcL marker combined with next-generation sequencing and morphological identification to analyse the diatom diversity in modern sediment samples of 17 intra-lake sites. We analysed abundance-based compositional taxonomic diversity and generic phylogenetic diversity to investigate the relationship of diatom diversity changes with water depth. The two approaches show differences in taxonomic identification and alpha diversity, revealing a generally higher diversity with the genetic approach. With respect to beta diversity and ordination analyses, both approaches result in similar patterns. Water depth or related lake environmental conditions are significant factors influencing intra-lake diatom patterns, showing many significant negative correlations between alpha and beta diversity and water depth. Further, one near-shore and two lagoon lake sites characterized by low (0-10m) and medium (10-30m) water depth are unusual with unique taxonomic compositions. At deeper (>30m) water sites we identified strongest phylogenetic clustering in Aulacoseira, but generally much less in Staurosira, which supports that water depth is a strong environmental filter on the Aulacoseira communities. Our study demonstrates the utility of combining analyses of genetic and morphological as well as phylogenetic diversity to decipher compositional and generic phylogenetic patterns, which are relevant in understanding intra-lake heterogeneity as a source of biodiversity in the sub-arctic glacial Lake Bolshoe Toko.


Assuntos
Biodiversidade , Diatomáceas , Lagos/microbiologia , Filogenia , Diatomáceas/classificação , Diatomáceas/genética , Sibéria
8.
Nat Commun ; 10(1): 264, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651568

RESUMO

Permafrost warming has the potential to amplify global climate change, because when frozen sediments thaw it unlocks soil organic carbon. Yet to date, no globally consistent assessment of permafrost temperature change has been compiled. Here we use a global data set of permafrost temperature time series from the Global Terrestrial Network for Permafrost to evaluate temperature change across permafrost regions for the period since the International Polar Year (2007-2009). During the reference decade between 2007 and 2016, ground temperature near the depth of zero annual amplitude in the continuous permafrost zone increased by 0.39 ± 0.15 °C. Over the same period, discontinuous permafrost warmed by 0.20 ± 0.10 °C. Permafrost in mountains warmed by 0.19 ± 0.05 °C and in Antarctica by 0.37 ± 0.10 °C. Globally, permafrost temperature increased by 0.29 ± 0.12 °C. The observed trend follows the Arctic amplification of air temperature increase in the Northern Hemisphere. In the discontinuous zone, however, ground warming occurred due to increased snow thickness while air temperature remained statistically unchanged.

9.
Nat Commun ; 4: 2408, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24005763

RESUMO

Siberian larch forests growing on shallow permafrost soils have not, until now, been considered to be controlling the abiotic and biotic characteristics of the vast number of thaw-lake ecosystems. Here we show, using four independent data sets (a modern data set from 201 lakes from the tundra to taiga, and three lake-core records), that lake-water geochemistry in Yakutia is highly correlated with vegetation. Alkalinity increases with catchment forest density. We postulate that in this arid area, higher evapotranspiration in larch forests compared with that in the tundra vegetation leads to local salt accumulation in soils. Solutes are transported to nearby thaw lakes during rain events and snow melt, but are not fully transported into rivers, because there is no continuous groundwater flow within permafrost soils. This implies that potentially large shifts in the chemical characteristics of aquatic ecosystems to known warming are absent because of the slow response of catchment forests to climate change.


Assuntos
Íons/análise , Lagos/química , Larix/fisiologia , Árvores/fisiologia , Ecossistema , Geografia , Sedimentos Geológicos , Modelos Teóricos , Sibéria , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA