Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 34(7): 1417-1427, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37262415

RESUMO

Differential mobility spectrometry (DMS) separates ions based on mobility differences between high and low electric field conditions. To enhance resolution, solvents such as water and acetonitrile are often used to modify the collision environment and take advantage of differing dynamic clustering behavior between analytes that coelute in hard-sphere environments (e.g., N2). When binary solvent mixtures are used to modify the DMS environment, one solvent can have a dominant influence over the other with respect to ion trajectories. For example, for quinoline derivatives, a 9:1 water:acetonitrile solvent mixture exhibited identical behavior to an environment containing only acetonitrile as a modifier. It was hypothesized that this effect arises due to the significantly different binding strengths of the two solvents. Here, we utilize a first-principles model of DMS to study analytes in single and binary solvent mixtures and explore the effects governing the dominance of one solvent over the other. Computed DMS dispersion curves of quinoline derivatives are in excellent agreement with those measured experimentally. For mixed-modifier environments, the predicted cluster populations show a clear preferential solvation of ions with the stronger binding solvent. The influence of ion-solvent binding energies, solvent concentration, and solvent molecule size is discussed in the context of the observed DMS behavior. This work can guide the usage of binary solvent mixtures for improving ion separations in cases where compounds coelute in pure N2 and in single-solvent modifier environments. Moreover, our results indicate that binary solvent mixtures can be used to create a relative scale for solvent binding energies.

2.
Anal Chem ; 94(49): 17011-17019, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36445839

RESUMO

Raman spectroscopy is commonly used in microplastics identification, but equipment variations yield inconsistent data structures that disrupt the development of communal analytical tools. We report a strategy to overcome the issue using a database of high-resolution, full-window Raman spectra. This approach enables customizable analytical tools to be easily created─a feature we demonstrate by creating machine-learning classification models using open-source random-forest, K-nearest neighbors, and multi-layer perceptron algorithms. These models yield >95% classification accuracy when trained on spectroscopic data with spectroscopic data downgraded to 1, 2, 4, or 8 cm-1 spacings in Raman shift. The accuracy can be maintained even in non-ideal conditions, such as with spectroscopic sampling rates of 1 kHz and when microplastic particles are outside the focal plane of the laser. This approach enables the creation of classification models that are robust and adaptable to varied spectrometer setups and experimental needs.


Assuntos
Microplásticos , Plásticos , Microscopia , Aprendizado de Máquina , Redes Neurais de Computação , Análise Espectral Raman/métodos
3.
J Am Soc Mass Spectrom ; 33(3): 535-547, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35099948

RESUMO

Differential mobility spectrometry is a separation technique that may be applied to a variety of analytes ranging from small molecule drugs to peptides and proteins. Although rudimentary theoretical models of differential mobility exist, these models are often only applied to small molecules and atomic ions without considering the effects of dynamic microsolvation. Here, we advance our theoretical description of differential ion mobility in pure N2 and microsolvating environments by incorporating higher order corrections to two-temperature theory (2TT) and a pseudoequilibrium approach to describe ion-neutral interactions. When comparing theoretical predictions to experimentally measured dispersion plots of over 300 different compounds, we find that higher order corrections to 2TT reduce errors by roughly a factor of 2 when compared to first order. Model predictions are accurate especially for pure N2 environments (mean absolute error of 4 V at SV = 4000 V). For strongly clustering environments, accurate thermochemical corrections for ion-solvent clustering are likely required to reliably predict differential ion mobility behavior. Within our model, general trends associated with clustering strength, solvent vapor concentration, and background gas temperature are well reproduced, and fine structure visible in some dispersion plots is captured. These results provide insight into the dynamic ion-solvent clustering process that underpins the phenomenon of differential ion mobility.

4.
Angew Chem Int Ed Engl ; 61(9): e202116794, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-34963024

RESUMO

Upon development of a workflow to analyze (±)-Verapamil and its metabolites using differential mobility spectrometry (DMS), we noticed that the ionogram of protonated Verapamil consisted of two peaks. This was inconsistent with its metabolites, as each exhibited only a single peak in the respective ionograms. The unique behaviour of Verapamil was attributed to protonation at its tertiary amino moiety, which generated a stereogenic quaternary amine. The introduction of additional chirality upon N-protonation of Verapamil renders four possible stereochemical configurations for the protonated ion: (R,R), (S,S), (R,S), or (S,R). The (R,R)/(S,S) and (R,S)/(S,R) enantiomeric pairs are diastereomeric and thus exhibit unique conformations that are resolvable by linear and differential ion mobility techniques. Protonation-induced chirality appears to be a general phenomenon, as N-protonation of 12 additional chiral amines generated diastereomers that were readily resolved by DMS.


Assuntos
Prótons , Verapamil/análise , Espectrometria de Mobilidade Iônica , Verapamil/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA