Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 142: 103750, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39173500

RESUMO

Chemotherapeutic drug resistance is a challenge for the effective treatment of OSCC. There are a couple of studies on the involvement of microRNAs (miRNAs) in chemoresistance of oral squamous cell carcinoma (OSCC), but the exact molecular events in many cases are not clearly understood. In this work, we intend to track down key miRNA(s) and unveil their regulatory molecular mechanisms in imparting chemoresistance in this lethal cancer. We analyzed gene and miRNA array profiles of drug-resistant OSCC cells, predicted miRNA targets, performed enrichment analysis, and validated our findings in cisplatin-sensitive and cisplatin-resistant SCC9 and H357 OSCC cells. We evaluated the anticancer and chemosensitivity roles of selected miRNA by adopting several molecular assays like qRT-PCR, MTT assay, wound healing assay, fluorescence imaging by DCFHDA, AO/EB staining, DAPI, and γ-H2AX accumulation assay. We also validated the miRNA-target binding by qRT-PCR and luciferase reporter assay. Among the enriched miRNAs, we found miR-185-5p downregulated in cisplatin-resistant OSCC cells as a signature miRNA modulating chemoresistance. The upregulation of miR-185-5p by mimic transfection restores cisplatin sensitivity by decreasing cell viability in a dose-dependent manner and increasing ROS-induced DNA damage and apoptosis. miR-185-5p overexpression increases miR-203a-3p expression through negative regulation of SOX9. siRNA-mediated silencing of the SOX9 also shows similar results. Mechanistically, miR-185-5p dependent miR-203a-3p expression decreases cisplatin efflux and cisplatin-induced DNA damage repair by regulating ABCC1, ABCB1, RRM2, and RAN. This study will pave the way for employing this miR-185-5p as a combination therapeutic strategy to combat cisplatin resistance in oral cancer.


Assuntos
Cisplatino , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Neoplasias Bucais , Fatores de Transcrição SOX9 , Cisplatino/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Neoplasias Bucais/genética , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Antineoplásicos/farmacologia
2.
IUBMB Life ; 76(3): 108-124, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37792370

RESUMO

MicroRNAs (miRNAs) are a class of noncoding RNAs of about 19-25 nucleotides, which serve as critical modulators of various cellular and biological processes by target gene regulation. Dysregulated expression of miRNAs modulates the pathophysiology of various human diseases, including cancer. Among miRNAs, miR-203a is one of the most extensively researched dysregulated miRNAs in different cancers. Our review investigated the roles of miR-203a in the hallmarks of cancer modulating different pathways through target gene regulations, chemoresistance, its crosstalk with other ncRNAs or genes in terms of ceRNAs impacting oncogenesis, and its potential applications in the diagnosis, prognosis, and chemotherapeutic responses in different cancer types. miR-203a impacts cancer cell behavior by regulating these exclusive hallmarks- sustaining proliferation, cell growth, invasion and metastasis, cell death, and angiogenesis. Besides, miR-203a is found in human circulating biofluids like plasma or serum of colorectal cancer, cervical cancer, and hepatocellular carcinoma, hinting at its potential as a biomarker. Further, miR-203a is involved in enhancing the chemosensitivity of cisplatin, docetaxel, paclitaxel, doxorubicin, and 5-fluorouracil in a variety of malignancies through their cognate target genes. These results suggest that miR-203a is a crucial multifaceted miRNA that controls cancer cell proliferation, metastasis, and chemotherapy response, shedding new light on its possible application.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Feminino , Humanos , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma Hepatocelular/genética , Cisplatino , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
3.
Biochim Biophys Acta Rev Cancer ; 1877(5): 188772, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35931391

RESUMO

Head and neck squamous cell carcinoma (HNSCC) are among the well-known neoplasms originating in the oral cavity, pharynx, and larynx. Despite advancements in chemotherapy, radiotherapy, and surgery, the survival rates of the patients are low, which has posed a major therapeutic challenge. A growing number of non-coding RNAs (ncRNAs), for instance, microRNAs, have been identified whose abnormal expression patterns have been implicated in HNSCC. However, more recently, several seminal research has shown that piwi-interacting RNAs (piRNAs), a promising and young class of small ncRNA, are linked to the emergence and progression of cancer. They can regulate transposable elements (TE) and gene expression through multiple mechanisms, making them potentially more powerful regulators than miRNAs. Hence, they can be more promising ncRNAs candidates for cancer therapeutic intervention. Here, we surveyed the roles and clinical implications of piRNAs and their PIWI proteins partners in tumorigenesis and associated molecular processes of cancer, with a particular focus on HNSCC, to offer a new avenue for diagnosis, prognosis, and therapeutic interventions for the malignancy, improving patient's outcomes.


Assuntos
Neoplasias de Cabeça e Pescoço , MicroRNAs , Elementos de DNA Transponíveis , Neoplasias de Cabeça e Pescoço/genética , Humanos , RNA Interferente Pequeno/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA