Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 23(5)2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29735954

RESUMO

Bacterial infections, particularly hospital-acquired infections caused by Pseudomonas aeruginosa, have become a global threat with a high mortality rate. Gram-negative bacteria including P. aeruginosa employ N-acyl homoserine lactones (AHLs) as chemical signals to regulate the expression of pathogenic phenotypes through a mechanism called quorum sensing (QS). Recently, strategies targeting bacterial behaviour or QS have received great attention due to their ability to disarm rather than kill pathogenic bacteria, which lowers the evolutionary burden on bacteria and the risk of resistance development. In the present study, we report the design and synthesis of N-alkyl- and N-aryl 3,4 dichloro- and 3,4-dibromopyrrole-2-one derivatives through the reductive amination of mucochloric and mucobromic acid with aliphatic and aromatic amines. The quorum sensing inhibition (QSI) activity of the synthesized compounds was determined against a P. aeruginosa MH602 reporter strain. The phenolic compounds exhibited the best activity with 80% and 75% QSI at 250 µM and were comparable in activity to the positive control compound Fu-30. Computational docking studies performed using the LasR receptor protein of P. aeruginosa suggested the importance of hydrogen bonding and hydrophobic interactions for QSI.


Assuntos
Antibacterianos/síntese química , Proteínas de Bactérias/antagonistas & inibidores , Furanos/química , Lactamas/síntese química , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Transativadores/antagonistas & inibidores , Acil-Butirolactonas , Aminação , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Desenho de Fármacos , Expressão Gênica , Lactamas/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Oxirredução , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pirróis/síntese química , Pirróis/farmacologia , Relação Estrutura-Atividade , Transativadores/química , Transativadores/genética , Transativadores/metabolismo
2.
Bioorg Med Chem ; 25(3): 1183-1194, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28049617

RESUMO

Bacteria communicate with one another and regulate their pathogenicity through a phenomenon known as quorum sensing (QS). When the bacterial colony reaches a threshold density, the QS system induces the production of virulence factors and the formation of biofilms, a powerful defence system against the host's immune responses. The glucosamine monomer has been shown to disrupt the bacterial QS system by inhibiting autoinducer (AI) signalling molecules such as the acyl-homoserine lactones (AHLs). In this study, the synthesis of acetoxy-glucosamides 8, hydroxy-glucosamides 9 and 3-oxo-glucosamides 12 was performed via the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC·HCl) and N,N'-dicyclohexylcarbodiimide (DCC) coupling methods. All of the synthesized compounds were tested against two bacterial strains, P. aeruginosa MH602 (LasI/R-type QS) and E. coli MT102 (LuxI/R-type QS), for QS inhibitory activity. The most active compound 9b showed 79.1% QS inhibition against P. aeruginosa MH602 and 98.4% against E. coli MT102, while compound 12b showed 64.5% inhibition against P. aeruginosa MH602 and 88.1% against E. coli MT102 strain at 2mM concentration. The ability of the compounds to inhibit the production of the virulence factor pyocyanin and biofilm formation in the P. aeruginosa (PA14) strain was also examined. Finally, computational docking studies were performed with the LasR receptor protein.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Glucosamina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Glucosamina/síntese química , Glucosamina/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
3.
Bioorg Med Chem ; 23(23): 7366-77, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26547407

RESUMO

Gram-negative bacteria such as Pseudomonas aeruginosa and Escherichia coli use N-acylated l-homoserine lactones (AHLs) as autoinducers (AIs) for quorum sensing (QS), a chief regulatory and cell-to-cell communication system. QS is responsible for social adaptation, virulence factor production, biofilm production and antibiotic resistance in bacteria. Fimbrolides, a class of halogenated furanones isolated from the red marine alga Delisea pulchra, have been shown to exhibit promising QS inhibitory activity against various Gram-negative and Gram-positive bacterial strains. In this work, various lactam analogues of fimbrolides viz., 1,5-dihydropyrrol-2-ones, were designed and synthesized via an efficient lactamization protocol. All the synthesized analogues were tested for QS inhibition against the E. coli AHL-monitor strain JB357 gfp (ASV). Compound 17a emerged as the most potent compound, followed by 9c, with AIC40 values (the ratio of synthetic inhibitor to natural AHL signaling molecule that is required to lower GFP expression to 40%) of 1.95 and 19.00, respectively. Finally, the potential binding interactions between the synthesized molecules and the LasR QS receptor were studied by molecular docking. Our results indicate that 1,5-dihydropyrrol-2-ones have the ability to serve as potential leads for the further development of novel QS inhibitors as antimicrobial therapeutics.


Assuntos
Antibacterianos/farmacologia , Lactamas/farmacologia , Pirrolidinonas/farmacologia , Percepção de Quorum/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Proteínas de Bactérias/química , Escherichia coli/efeitos dos fármacos , Lactamas/síntese química , Lactamas/química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Pirrolidinonas/síntese química , Pirrolidinonas/química , Transativadores/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA