Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Open Forum Infect Dis ; 11(4): ofae169, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665173

RESUMO

Background: Using a multiple-measurement approach, we examined the real-world effectiveness of portable HEPA air filtration devices (air cleaners) in a school setting. Methods: We collected data over 7 weeks during winter 2022/2023 in 2 Swiss secondary school classes: environmental (CO2, particle concentrations), epidemiologic (absences related to respiratory infections), audio (coughing), and molecular (bioaerosol and saliva samples). Using a crossover design, we compared particle concentrations, coughing, and risk of infection with and without air cleaners. Results: All 38 students participated (age, 13-15 years). With air cleaners, mean particle concentration decreased by 77% (95% credible interval, 63%-86%). There were no differences in CO2 levels. Absences related to respiratory infections were 22 without air cleaners vs 13 with them. Bayesian modeling suggested a reduced risk of infection, with a posterior probability of 91% and a relative risk of 0.73 (95% credible interval, 0.44-1.18). Coughing also tended to be less frequent (posterior probability, 93%), indicating that fewer symptomatic students were in class. Molecular analysis detected mainly non-SARS-CoV-2 viruses in saliva (50/448 positive) but not in bioaerosols (2/105) or on the HEPA filters of the air cleaners (4/160). The molecular detection rate in saliva was similar with and without air cleaners. Spatiotemporal analysis of positive saliva samples identified several likely transmissions. Conclusions: Air cleaners improved air quality and showed potential benefits in reducing respiratory infections. Airborne detection of non-SARS-CoV-2 viruses was rare, suggesting that these viruses may be more difficult to detect in the air. Future studies should examine the importance of close contact and long-range transmission and the cost-effectiveness of using air cleaners.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38467247

RESUMO

OBJECTIVES: To compare the prevalence of SARS-CoV-2 and other respiratory viruses in saliva and bioaerosols between two winters and to model the probability of virus detection in classroom air for different viruses. METHODS: We analysed saliva, air, and air cleaner filter samples from studies conducted in two Swiss secondary schools (students aged 14-17 years) over 7 weeks during the winters of 2021/22 and 2022/23. Two bioaerosol sampling devices and high efficiency particulate air (HEPA) filters from air cleaners were used to collect airborne virus particles in four classrooms. Daily bioaerosol samples were pooled for each sampling device before PCR analysis of a panel of 19 respiratory viruses and viral subtypes. The probability of detection of airborne viruses was modelled using an adjusted Bayesian logistic regression model. RESULTS: Three classes (58 students) participated in 2021/22, and two classes (38 students) in 2022/23. During winter 2021/22, SARS-CoV-2 dominated in saliva (19 of 21 positive samples) and bioaerosols (9 of 10). One year later, there were 50 positive saliva samples, mostly influenza B, rhinovirus, and adenovirus, and two positive bioaerosol samples, one rhinovirus and one adenovirus. The weekly probability of airborne detection was 34% (95% credible interval [CrI] 22-47%) for SARS-CoV-2 and 10% (95% CrI 5-16%) for other respiratory viruses. DISCUSSION: There was a distinct shift in the distribution of respiratory viruses from SARS-CoV-2 during the omicron wave to other respiratory viruses one year later. SARS-CoV-2 is more likely to be detected in the air than other endemic respiratory viruses, possibly reflecting differences in viral characteristics and the composition of virus-carrying particles that facilitate airborne long-range transmission.

3.
Pathogens ; 13(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38251368

RESUMO

Whole-genome sequencing (WGS) represents the main technology for SARS-CoV-2 lineage characterization in diagnostic laboratories worldwide. The rapid, near-full-length sequencing of the viral genome is commonly enabled by high-throughput sequencing of PCR amplicons derived from cDNA molecules. Here, we present a new approach called NASCarD (Nanopore Adaptive Sampling with Carrier DNA), which allows a low amount of nucleic acids to be sequenced while selectively enriching for sequences of interest, hence limiting the production of non-target sequences. Using COVID-19 positive samples available during the omicron wave, we demonstrate how the method may lead to >99% genome completeness of the SARS-CoV-2 genome sequences within 7 h of sequencing at a competitive cost. The new approach may have applications beyond SARS-CoV-2 sequencing for other DNA or RNA pathogens in clinical samples.

4.
Diagnostics (Basel) ; 13(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37761259

RESUMO

BACKGROUND: Currently, assessing the diagnostic performance of new laboratory tests assumes a perfect reference standard, which is rarely the case. Wrong classifications of the true disease status will inevitably lead to biased estimates of sensitivity and specificity. OBJECTIVES: Using Bayesian' latent class models (BLCMs), an approach that does not assume a perfect reference standard, we re-analyzed data of a large prospective observational study assessing the diagnostic accuracy of an antigen test for the diagnosis of SARS-CoV-2 infection in clinical practice. METHODS: A cohort of consecutive patients presenting to a COVID-19 testing facility affiliated with a Swiss University Hospital were recruited (n = 1465). Two real-time PCR tests were conducted in parallel with the Roche/SD Biosensor rapid antigen test on nasopharyngeal swabs. A two-test (PCR and antigen test), three-population BLCM was fitted to the frequencies of paired test results. RESULTS: Based on the BLCM, the sensitivities of the RT-PCR and the Roche/SD Biosensor rapid antigen test were 98.5% [95% CRI 94.8;100] and 82.7% [95% CRI 66.8;100]. The specificities were 97.7% [96.1;99.7] and 99.9% [95% CRI 99.6;100]. CONCLUSIONS: Applying the BLCM, the diagnostic accuracy of RT-PCR was high but not perfect. In contrast to previous results, the sensitivity of the antigen test was higher. Our results suggest that BLCMs are valuable tools for investigating the diagnostic performance of laboratory tests in the absence of perfect reference standard.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37544608

RESUMO

OBJECTIVES: The diagnosis of larval cestodiases in humans primarily depends on using imaging techniques in combination with serological tests. However, in case of atypical imaging results, negative serology results due to immunosuppression, or infection with rare taeniid species, traditional diagnostic tools may not provide a definitive species-level diagnosis. We aimed to validate a rapid, reliable, and cost-effective single-step real-time PCR method that can identify and differentiate larval cestodiases from biopsy material. METHODS: We validated a real-time PCR technique able to distinguish Echinococcus multilocularis, E. granulosus sensu lato (s.l.), and Taenia spp. from biopsy or cytology material in a single-step analysis. Further Sanger sequencing of E. granulosus s.l. and Taenia spp. amplicons enables differentiation of various Echinococcus and Taenia species. The assay was validated on (a) a reference sample collection of 69 clinical and veterinary cases confirmed by imaging, serology, and morphological analysis, (b) 38 routine human patient samples confirmed for aforementioned pathogens by a conventional end-point PCR, and (c) 127 samples from patients with suspected echinococcosis that were submitted to our laboratory for diagnostic analysis. RESULTS: Compared to a conventional reference end-point PCR approach, the quadruplex real-time PCR exhibited a lower limit of detection in a serial dilution with 5-log dilutions for all three targets (2 log for E. multilocularis, 1 log for E. granulosus s.s., and 1 log for T. saginata). We were able to detect DNA from E. multilocularis, E. granulosus s.l. (E. granulosus s.s., E. canadensis, E. ortleppi, and E. felidis), a wide range of Taenia spp., as well as from non-echinococcal metacestodes such as Hydatigera taeniaformis, Hymenolepis spp., Versteria sp., and Spirometra erinaceieuropaei. DISCUSSION: We suggest that the presented real-time PCR method is a suitable tool to be routinely used in a clinical microbiology laboratory to rapidly detect and identify larval cestodiases in human tissue.

6.
PLoS Med ; 20(5): e1004226, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37200241

RESUMO

BACKGROUND: Growing evidence suggests an important contribution of airborne transmission to the overall spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), in particular via smaller particles called aerosols. However, the contribution of school children to SARS-CoV-2 transmission remains uncertain. The aim of this study was to assess transmission of airborne respiratory infections and the association with infection control measures in schools using a multiple-measurement approach. METHODS AND FINDINGS: We collected epidemiological (cases of Coronavirus Disease 2019 (COVID-19)), environmental (CO2, aerosol and particle concentrations), and molecular data (bioaerosol and saliva samples) over 7 weeks from January to March 2022 (Omicron wave) in 2 secondary schools (n = 90, average 18 students/classroom) in Switzerland. We analyzed changes in environmental and molecular characteristics between different study conditions (no intervention, mask wearing, air cleaners). Analyses of environmental changes were adjusted for different ventilation, the number of students in class, school and weekday effects. We modeled disease transmission using a semi-mechanistic Bayesian hierarchical model, adjusting for absent students and community transmission. Molecular analysis of saliva (21/262 positive) and airborne samples (10/130) detected SARS-CoV-2 throughout the study (weekly average viral concentration 0.6 copies/L) and occasionally other respiratory viruses. Overall daily average CO2 levels were 1,064 ± 232 ppm (± standard deviation). Daily average aerosol number concentrations without interventions were 177 ± 109 1/cm3 and decreased by 69% (95% CrI 42% to 86%) with mask mandates and 39% (95% CrI 4% to 69%) with air cleaners. Compared to no intervention, the transmission risk was lower with mask mandates (adjusted odds ratio 0.19, 95% CrI 0.09 to 0.38) and comparable with air cleaners (1.00, 95% CrI 0.15 to 6.51). Study limitations include possible confounding by period as the number of susceptible students declined over time. Furthermore, airborne detection of pathogens document exposure but not necessarily transmission. CONCLUSIONS: Molecular detection of airborne and human SARS-CoV-2 indicated sustained transmission in schools. Mask mandates were associated with greater reductions in aerosol concentrations than air cleaners and with lower transmission. Our multiple-measurement approach could be used to continuously monitor transmission risk of respiratory infections and the effectiveness of infection control measures in schools and other congregate settings.


Assuntos
COVID-19 , Infecções Respiratórias , Criança , Humanos , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Suíça/epidemiologia , Teorema de Bayes , Dióxido de Carbono , Aerossóis e Gotículas Respiratórios , Instituições Acadêmicas
7.
Front Microbiol ; 14: 1104752, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113238

RESUMO

Introduction: Tuberculosis (TB) is an infectious disease caused by the group of bacterial pathogens Mycobacterium tuberculosis complex (MTBC) and is one of the leading causes of death worldwide. Timely diagnosis and treatment of drug-resistant TB is a key pillar of WHO's strategy to combat global TB. The time required to carry out drug susceptibility testing (DST) for MTBC via the classic culture method is in the range of weeks and such delays have a detrimental effect on treatment outcomes. Given that molecular testing is in the range of hours to 1 or 2 days its value in treating drug resistant TB cannot be overstated. When developing such tests, one wants to optimize each step so that tests are successful even when confronted with samples that have a low MTBC load or contain large amounts of host DNA. This could improve the performance of the popular rapid molecular tests, especially for samples with mycobacterial loads close to the limits of detection. Where optimizations could have a more significant impact is for tests based on targeted next generation sequencing (tNGS) which typically require higher quantities of DNA. This would be significant as tNGS can provide more comprehensive drug resistance profiles than the relatively limited resistance information provided by rapid tests. In this work we endeavor to optimize pre-treatment and extraction steps for molecular testing. Methods: We begin by choosing the best DNA extraction device by comparing the amount of DNA extracted by five commonly used devices from identical samples. Following this, the effect that decontamination and human DNA depletion have on extraction efficiency is explored. Results: The best results were achieved (i.e., the lowest Ct values) when neither decontamination nor human DNA depletion were used. As expected, in all tested scenarios the addition of decontamination to our workflow substantially reduced the yield of DNA extracted. This illustrates that the standard TB laboratory practice of applying decontamination, although being vital for culture-based testing, can negatively impact the performance of molecular testing. As a complement to the above experiments, we also considered the best Mycobacterium tuberculosis DNA storage method to optimize molecular testing carried out in the near- to medium-term. Comparing Ct values following three-month storage at 4 °C and at -20 °C and showed little difference between the two. Discussion: In summary, for molecular diagnostics aimed at mycobacteria this work highlights the importance of choosing the right DNA extraction device, indicates that decontamination causes significant loss of mycobacterial DNA, and shows that samples preserved for further molecular testing can be stored at 4 °C, just as well at -20 °C. Under our experimental settings, human DNA depletion gave no significant improvement in Ct values for the detection of MTBC.

8.
medRxiv ; 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38234723

RESUMO

Background: Using a multiple-measurement approach, we examined the real-world effectiveness of portable HEPA-air filtration devices (air cleaners) in a school setting. Methods: We collected environmental (CO2, particle concentrations), epidemiological (absences related to respiratory infections), audio (coughing), and molecular data (bioaerosol and saliva samples) over seven weeks during winter 2022/2023 in two Swiss secondary school classes. Using a cross-over study design, we compared particle concentrations, coughing, and the risk of infection with vs without air cleaners. Results: All 38 students (age 13-15 years) participated. With air cleaners, mean particle concentration decreased by 77% (95% credible interval 63%-86%). There were no differences in CO2 levels. Absences related to respiratory infections were 22 without vs 13 with air cleaners. Bayesian modeling suggested a reduced risk of infection, with a posterior probability of 91% and a relative risk of 0.73 (95% credible interval 0.44-1.18). Coughing also tended to be less frequent (posterior probability 93%). Molecular analysis detected mainly non-SARS-CoV-2 viruses in saliva (50/448 positive), but not in bioaerosols (2/105 positive) or HEPA-filters (4/160). The detection rate was similar with vs without air cleaners. Spatiotemporal analysis of positive saliva samples identified several likely transmissions. Conclusions: Air cleaners improved air quality, showed a potential benefit in reducing respiratory infections, and were associated with less coughing. Airborne detection of non-SARS-CoV-2 viruses was rare, suggesting that these viruses may be more difficult to detect in the air. Future studies should examine the importance of close contact and long-range transmission, and the cost-effectiveness of using air cleaners.

9.
Int J Infect Dis ; 119: 38-40, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35364282

RESUMO

BACKGROUND: SARS-CoV-2 antigen tests with saliva facilitate examination in settings that lack trained personnel. However, little is known about the diagnostic accuracy in real-life clinical settings. Therefore, we studied the diagnostic accuracy of a saliva antigen test in diagnosing SARS-CoV-2 infection in a primary/secondary care testing facility. METHODS: Individuals who presented at a COVID-19 testing facility affiliated with a Swiss university hospital were prospectively recruited (n=377). Saliva specimen was obtained, and the PCL Inc. COVID19 Gold antigen test was conducted in parallel with 2 real-time polymerase chain reaction (RT-PCR) assays from a nasopharyngeal swab. RESULTS: RT-PCR results were positive in 53 individuals, corresponding to a prevalence of 14.1% (missing material in 1 individual). The PCL saliva antigen test was positive in 22 individuals (5.8%) and negative in 354 (93.9%). The sensitivity of the saliva antigen test was 30.2% (95% confidence interval 18.3, 44.3), both overall and in symptomatic individuals. The specificity was 98.1% (96.0, 99.3). CONCLUSIONS: The diagnostic accuracy of a SARS-CoV-2 saliva antigen test in a primary/secondary care testing facility was remarkably lower than that reported in the manufacturer's specifications.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Nasofaringe , Saliva , Sensibilidade e Especificidade , Manejo de Espécimes
10.
J Viral Hepat ; 29(1): 60-68, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610183

RESUMO

Chronic hepatitis B virus (HBV) infection affects >10% of the general population and is the leading cause of liver cirrhosis and cancer in West Africa. Despite current recommendations, HBV is often not tested for in clinical routine in the region. We included all people living with HIV (PLWH) in care between March and July 2019 at Fann University Hospital in Dakar (Senegal) and proposed hepatitis B surface antigen (HBsAg) test to those never tested. All HBsAg-positive underwent HIV and HBV viral load (VL) and liver stiffness measurement. We evaluated, using logistic regression, potential associations between patient characteristics and (a) HBV testing uptake; (b) HIV/HBV co-infection among individual HBsAg tested. We determined the proportion of co-infected who had HBV DNA >20 IU/ml on ART and sequenced HBV polymerase in those with HBV replication.of 1076 PLWH in care, 689 (64.0%) had never had an HBsAg test prior to our HBV testing intervention. Women and individuals >40 years old were less likely to have been previously tested. After HBV testing intervention,107/884 (12.1%) PLWH were HBsAg-positive. Seven of 58 (12.1%) individuals newly diagnosed with HIV/HBV co-infection had a detectable HBV VL, of whom five were HIV-suppressed. Two patients on ART including 3TC and AZT as backbone showed the presence of the triple resistance mutation 180M/204I/80V. In this Senegalese urban HIV clinic, the majority of patients on ART had never been tested for HBV infection. One in ten co-infected individuals had a detectable HBV VL despite HIV suppression, and 8% were not receiving a TDF-containing regimen.


Assuntos
Coinfecção , Infecções por HIV , Hepatite B Crônica , Hepatite B , Adulto , Coinfecção/epidemiologia , Feminino , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Hepatite B/complicações , Hepatite B/diagnóstico , Hepatite B/epidemiologia , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B/genética , Hepatite B Crônica/complicações , Hepatite B Crônica/diagnóstico , Hepatite B Crônica/epidemiologia , Humanos , Senegal/epidemiologia
11.
J Clin Microbiol ; 60(1): e0169821, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34757834

RESUMO

This first pilot trial on external quality assessment (EQA) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) whole-genome sequencing, initiated by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Genomic and Molecular Diagnostics (ESGMD) and the Swiss Society for Microbiology (SSM), aims to build a framework between laboratories in order to improve pathogen surveillance sequencing. Ten samples with various viral loads were sent out to 15 clinical laboratories that had free choice of sequencing methods and bioinformatic analyses. The key aspects on which the individual centers were compared were the identification of (i) single nucleotide polymorphisms (SNPs) and indels, (ii) Pango lineages, and (iii) clusters between samples. The participating laboratories used a wide array of methods and analysis pipelines. Most were able to generate whole genomes for all samples. Genomes were sequenced to various depths (up to a 100-fold difference across centers). There was a very good consensus regarding the majority of reporting criteria, but there were a few discrepancies in lineage and cluster assignments. Additionally, there were inconsistencies in variant calling. The main reasons for discrepancies were missing data, bioinformatic choices, and interpretation of data. The pilot EQA was overall a success. It was able to show the high quality of participating laboratories and provide valuable feedback in cases where problems occurred, thereby improving the sequencing setup of laboratories. A larger follow-up EQA should, however, improve on defining the variables and format of the report. Additionally, contamination and/or minority variants should be a further aspect of assessment.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Laboratórios , Laboratórios Clínicos , Projetos Piloto
12.
Euro Surveill ; 27(48)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36695463

RESUMO

A large clonal outbreak caused by vancomycin-resistant Enterococcus faecium (VRE) affected the Bern University Hospital group from the end of December 2017 until July 2020. We describe the characteristics of the outbreak and the bundle of infection prevention and control (IPC) measures implemented. The outbreak was first recognised when two concomitant cases of VRE bloodstream infection were identified on the oncology ward. During 32 months, 518 patients in the 1,300-bed hospital group were identified as vanB VRE carriers. Eighteen (3.5%) patients developed an invasive infection, of whom seven had bacteraemia. In 2018, a subset of 328 isolates were analysed by whole genome sequencing, 312 of which were identified as sequence type (ST) 796. The initial IPC measures were implemented with a focus on the affected wards. However, in June 2018, ST796 caused another increase in cases, and the management strategy was intensified and escalated to a hospital-wide level. The clinical impact of this large nosocomial VRE outbreak with the emergent clone ST796 was modest. A hospital-wide approach with a multimodal IPC bundle was successful against this highly transmissible strain.


Assuntos
Infecção Hospitalar , Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Enterococos Resistentes à Vancomicina , Humanos , Vancomicina , Enterococcus faecium/genética , Infecção Hospitalar/epidemiologia , Suíça/epidemiologia , Enterococos Resistentes à Vancomicina/genética , Surtos de Doenças , Hospitais Universitários , Infecções por Bactérias Gram-Positivas/epidemiologia
13.
Int J Infect Dis ; 109: 118-122, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34242764

RESUMO

BACKGROUND: Laboratory tests are a mainstay in managing the COVID-19 pandemic, and high hopes are placed on rapid antigen tests. However, the accuracy of rapid antigen tests in real-life clinical settings is unclear because adequately designed diagnostic accuracy studies are essentially lacking. OBJECTIVES: The aim of this study was to assess the accuracy of a rapid antigen test in diagnosing SARS-CoV-2 infection in a primary/secondary care testing facility. METHODS: Consecutive individuals presenting at a COVID-19 testing facility affiliated to a Swiss University Hospital were recruited (n = 1465%). Nasopharyngeal swabs were obtained, and the Roche/SD Biosensor rapid antigen test was conducted in parallel with two real-time PCR tests (reference standard). RESULTS: Among the 1465 patients recruited, RT-PCR was positive in 141 individuals, corresponding to a prevalence of 9.6%. The Roche/SD Biosensor rapid antigen test was positive in 94 patients (6.4%), and negative in 1368 individuals (93.4%; insufficient sample material in 3 patients). The overall sensitivity of the rapid antigen test was 65.3% (95% confidence interval [CI] 56.8-73.1), the specificity was 99.9% (95% CI 99.5-100.0). In asymptomatic individuals, the sensitivity was 44.0% (95% CI 24.4-65.1). CONCLUSIONS: The accuracy of the SARS-CoV-2 Roche/SD Biosensor rapid antigen test in diagnosing SARS-CoV-2 infections in a primary/secondary care testing facility was considerably lower compared with the manufacturer's data. Widespread application in such a setting might lead to a considerable number of individuals falsely classified as SARS-CoV-2 negative.


Assuntos
COVID-19 , SARS-CoV-2 , Antígenos Virais , Teste para COVID-19 , Humanos , Pandemias , Sensibilidade e Especificidade
14.
Microorganisms ; 9(4)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806013

RESUMO

The rapid spread of the SARS-CoV-2 lineages B.1.1.7 (N501Y.V1) throughout the UK, B.1.351 (N501Y.V2) in South Africa, and P.1 (B.1.1.28.1; N501Y.V3) in Brazil has led to the definition of variants of concern (VoCs) and recommendations for lineage specific surveillance. In Switzerland, during the last weeks of December 2020, we established a nationwide screening protocol across multiple laboratories, focusing first on epidemiological and microbiological definitions. In January 2021, we validated and implemented an N501Y-specific PCR to rapidly screen for VoCs, which are then confirmed using amplicon sequencing or whole genome sequencing (WGS). A total of 13,387 VoCs have been identified since the detection of the first Swiss case in October 2020, with 4194 being B.1.1.7, 172 B.1.351, and 7 P.1. The remaining 9014 cases of VoCs have been described without further lineage specification. Overall, all diagnostic centers reported a rapid increase of the percentage of detected VOCs, with a range of 6 to 46% between 25 to 31 of January 2021 increasing towards 41 to 82% between 22 to 28 of February. A total of 739 N501Y positive genomes were analysed and show a broad range of introduction events to Switzerland. In this paper, we describe the nationwide coordination and implementation process across laboratories, public health institutions, and researchers, the first results of our N501Y-specific variant screening, and the phylogenetic analysis of all available WGS data in Switzerland, that together identified the early introduction events and subsequent community spreading of the VoCs.

15.
Allergy ; 76(3): 853-865, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32997812

RESUMO

BACKGROUND: Serological immunoassays that can identify protective immunity against SARS-CoV-2 are needed to adapt quarantine measures, assess vaccination responses, and evaluate donor plasma. To date, however, the utility of such immunoassays remains unclear. In a mixed-design evaluation study, we compared the diagnostic accuracy of serological immunoassays that are based on various SARS-CoV-2 proteins and assessed the neutralizing activity of antibodies in patient sera. METHODS: Consecutive patients admitted with confirmed SARS-CoV-2 infection were prospectively followed alongside medical staff and biobank samples from winter 2018/2019. An in-house enzyme-linked immunosorbent assay utilizing recombinant receptor-binding domain (RBD) of the SARS-CoV-2 spike protein was developed and compared to three commercially available enzyme-linked immunosorbent assays (ELISAs) targeting the nucleoprotein (N), the S1 domain of the spike protein (S1), and a lateral flow immunoassay (LFI) based on full-length spike protein. Neutralization assays with live SARS-CoV-2 were performed. RESULTS: One thousand four hundred and seventy-seven individuals were included comprising 112 SARS-CoV-2 positives (defined as a positive real-time PCR result; prevalence 7.6%). IgG seroconversion occurred between day 0 and day 21. While the ELISAs showed sensitivities of 88.4% for RBD, 89.3% for S1, and 72.9% for N protein, the specificity was above 94% for all tests. Out of 54 SARS-CoV-2 positive individuals, 96.3% showed full neutralization of live SARS-CoV-2 at serum dilutions ≥ 1:16, while none of the 6 SARS-CoV-2-negative sera revealed neutralizing activity. CONCLUSIONS: ELISAs targeting RBD and S1 protein of SARS-CoV-2 are promising immunoassays which shall be further evaluated in studies verifying diagnostic accuracy and protective immunity against SARS-CoV-2.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
16.
Transpl Infect Dis ; 23(3): e13515, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33210830

RESUMO

Ganciclovir (GCV)-resistant cytomegalovirus (CMV) infection is a common problem among solid organ transplant (SOT) recipients without prior CMV immunity (CMV D+/R-). GCV-resistant CMV represents a particular challenge for CMV management. Letermovir is a recently licensed antiviral agent for primary CMV prophylaxis in allogenic hematopoietic stem cell transplant (HSCT) recipients. Given the favorable safety profile and its oral bioavailability letermovir may be considered a valuable off-label option for secondary prophylaxis of GCV-resistant CMV in SOT recipients. Here, we describe our experience with letermovir as secondary prophylaxis for GCV-resistant CMV in two renal transplant recipients and review the literature in regard of previously published cases. Letermovir resistance emerged after a few months of secondary prophylaxis in the two renal transplant recipients. In both cases, the previously described UL56 C325Y letermovir resistance mutation was detected. In vitro studies of letermovir suggest a relatively low genetic barrier to resistance. Therefore, caution is warranted when using letermovir as secondary prophylaxis for GCV-resistant CMV infection.


Assuntos
Infecções por Citomegalovirus , Transplante de Órgãos , Acetatos , Antivirais/uso terapêutico , Citomegalovirus , Infecções por Citomegalovirus/tratamento farmacológico , Farmacorresistência Viral , Ganciclovir/uso terapêutico , Humanos , Quinazolinas , Transplantados
17.
J Clin Microbiol ; 58(6)2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32229603

RESUMO

Amplicon sequencing of the 16S rRNA gene is commonly used for the identification of bacterial isolates in diagnostic laboratories and mostly relies on the Sanger sequencing method. The latter, however, suffers from a number of limitations, with the most significant being the inability to resolve mixed amplicons when closely related species are coamplified from a mixed culture. This often leads to either increased turnaround time or absence of usable sequence data. Short-read next-generation sequencing (NGS) technologies could solve the mixed amplicon issue but would lack both cost efficiency at low throughput and fast turnaround times. Nanopore sequencing developed by Oxford Nanopore Technologies (ONT) could solve those issues by enabling a flexible number of samples per run and an adjustable sequencing time. Here, we report on the development of a standardized laboratory workflow combined with a fully automated analysis pipeline LORCAN (long read consensus analysis), which together provide a sample-to-report solution for amplicon sequencing and taxonomic identification of the resulting consensus sequences. Validation of the approach was conducted on a panel of reference strains and on clinical samples consisting of single or mixed rRNA amplicons associated with various bacterial genera by direct comparison to the corresponding Sanger sequences. Additionally, simulated read and amplicon mixtures were used to assess LORCAN's behavior when dealing with samples with known cross-contamination levels. We demonstrate that by combining ONT amplicon sequencing results with LORCAN, the accuracy of Sanger sequencing can be closely matched (>99.6% sequence identity) and that mixed samples can be resolved at the single-base resolution level. The presented approach has the potential to significantly improve the flexibility, reliability, and availability of amplicon sequencing in diagnostic settings.


Assuntos
Sequenciamento por Nanoporos , Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Ribossômico 16S/genética , Reprodutibilidade dos Testes
18.
Open Forum Infect Dis ; 4(1): ofw257, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28480250

RESUMO

This report describes a case of relapsing pneumococcal peritonitis. The postulated source of infection was vaginal colonization and secondary adherence of pneumococci to an intrauterine contraceptive device. After immunization with a conjugate pneumococcal vaccine, her antibody levels were observed. She remained infection free at the 2-year follow-up investigation.

19.
Plant Cell ; 24(5): 2213-24, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22634763

RESUMO

The flagellin receptor of Arabidopsis thaliana, At-FLAGELLIN SENSING2 (FLS2), has become a model for mechanistic and functional studies on plant immune receptors. Here, we started out with a comparison of At-FLS2 and the orthologous tomato (Solanum lycopersicum) receptor Sl-FLS2. Both receptors specifically responded to picomolar concentrations of the genuine flg22 ligand but proved insensitive to >10(6)-fold higher concentrations of CLV3 peptides that have recently been reported as a second type of ligand for At-FLS2. At-FLS2 and Sl-FLS2 exhibit species-specific differences in the recognition of shortened or sequence-modified flg22 ligands. To map the sites responsible for these species-specific traits on the FLS2 receptors, we performed domain swaps, substituting subsets of the 28 leucine-rich repeats (LRRs) in At-FLS2 with the corresponding LRRs from Sl-FLS2. We found that the LRRs 7 to 10 of Sl-FLS2 determine the high affinity of Sl-FLS2 for the core part RINSAKDD of flg22. In addition, we discovered importance of the LRRs 19 to 24 for the responsiveness to C-terminally modified flagellin peptides. These results indicate that ligand perception in FLS2 is a complex molecular process that involves LRRs from both the outermost and innermost LRRs of the FLS2 ectodomain.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flagelina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Solanum lycopersicum/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flagelina/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas Quinases/genética
20.
Plant Cell ; 24(3): 1096-113, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22388452

RESUMO

Flagellin sensing2 (FLS2) is a transmembrane receptor kinase that activates antimicrobial defense responses upon binding of bacterial flagellin or the flagellin-derived peptide flg22. We find that some Arabidopsis thaliana FLS2 is present in FLS2-FLS2 complexes before and after plant exposure to flg22. flg22 binding capability is not required for FLS2-FLS2 association. Cys pairs flank the extracellular leucine rich repeat (LRR) domain in FLS2 and many other LRR receptors, and we find that the Cys pair N-terminal to the FLS2 LRR is required for normal processing, stability, and function, possibly due to undescribed endoplasmic reticulum quality control mechanisms. By contrast, disruption of the membrane-proximal Cys pair does not block FLS2 function, instead increasing responsiveness to flg22, as indicated by a stronger oxidative burst. There was no evidence for intermolecular FLS2-FLS2 disulfide bridges. Truncated FLS2 containing only the intracellular domain associates with full-length FLS2 and exerts a dominant-negative effect on wild-type FLS2 function that is dependent on expression level but independent of the protein kinase capacity of the truncated protein. FLS2 is insensitive to disruption of multiple N-glycosylation sites, in contrast with the related receptor EF-Tu receptor that can be rendered nonfunctional by disruption of single glycosylation sites. These and additional findings more precisely define the molecular mechanisms of FLS2 receptor function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/metabolismo , Transdução de Sinais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Glicosilação , Ligantes , Mutagênese Sítio-Dirigida , Proteínas Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA