Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
J Anat ; 244(4): 557-593, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38037880

RESUMO

Piatnitzkysauridae were Jurassic theropods that represented the earliest diverging branch of Megalosauroidea, being one of the earliest lineages to have evolved moderate body size. This clade's typical body size and some unusual anatomical features raise questions about locomotor function and specializations to aid in body support; and other palaeobiological issues. Biomechanical models and simulations can illuminate how extinct animals may have moved, but require anatomical data as inputs. With a phylogenetic context, osteological evidence, and neontological data on anatomy, it is possible to infer the musculature of extinct taxa. Here, we reconstructed the hindlimb musculature of Piatnitzkysauridae (Condorraptor, Marshosaurus, and Piatnitzkysaurus). We chose this clade for future usage in biomechanics, for comparisons with myological reconstructions of other theropods, and for the resulting evolutionary implications of our reconstructions; differential preservation affects these inferences, so we discuss these issues as well. We considered 32 muscles in total: for Piatnitzkysaurus, the attachments of 29 muscles could be inferred based on the osteological correlates; meanwhile, in Condorraptor and Marshosaurus, we respectively inferred 21 and 12 muscles. We found great anatomical similarity within Piatnitzkysauridae, but differences such as the origin of M. ambiens and size of M. caudofemoralis brevis are present. Similarities were evident with Aves, such as the division of the M. iliofemoralis externus and M. iliotrochantericus caudalis and a broad depression for the M. gastrocnemius pars medialis origin on the cnemial crest. Nevertheless, we infer plesiomorphic features such as the origins of M. puboischiofemoralis internus 1 around the "cuppedicus" fossa and M. ischiotrochantericus medially on the ischium. As the first attempt to reconstruct muscles in early tetanurans, our study allows a more complete understanding of myological evolution in theropod pelvic appendages.


Assuntos
Evolução Biológica , Dinossauros , Animais , Filogenia , Extremidade Inferior , Membro Posterior/anatomia & histologia , Dinossauros/anatomia & histologia , Músculo Esquelético/anatomia & histologia
2.
R Soc Open Sci ; 10(8): 230481, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37593714

RESUMO

During the Mesozoic, non-avian theropods represented one of the most successful clades globally distributed, with a wide diversity of forms. An example is the clade Megalosauroidea, which included medium- to large-bodied forms. Here, we analyse the macroevolution of the locomotor system in early Theropoda, emphasizing the Megalosauroidea. We scored the Spinosaurus neotype in a published taxon-character matrix and described the associated modifications in character states, mapping them onto a phylogeny and using these to study disparity. In the evolution of Megalosauroidea, there was the mosaic emergence of a low swollen ridge; enlargement of the posterior brevis fossa and emergence of a posterodorsal process on the ilium in some megalosauroids; emergence of a femoral head oriented anteromedially and medially angled, and appearance of posterolaterally oriented medial femoral condyles in spinosaurids. The greatest morphological disparity is in the ilium of megalosaurids; the ischium seems to have a high degree of homoplasy; there is a clear distinction in the femoral morphospace regarding megalosauroids and other theropods; piatnitzkysaurids show considerable disparity of zeugopodial characters. These reconstructions of osteological evolution form a stronger basis on which other studies could build, such as mapping of pelvic/appendicular musculature and/or correlating skeletal traits with changes in locomotor function.

3.
An Acad Bras Cienc ; 91(suppl 2): e20180861, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31241651

RESUMO

We describe the first occurrence of biogenic traces made by mammals within an iron formation cave located in the Serra da Ferrugem Ridge, in Southeastern Brazil. These bioerosions are tooth traces produced in boulders, walls and floor within the cave. The traces occur as sets of two or more grooves, which are highly variable in size. The grooves were compared to tooth traces artificially produced by imprinting the incisors of different mammal species collected in the cave region on soft clay. Among those, the following taxa are potential tracemakers: Akodon sp., Oligoryzomys sp., Necromys lasiurus, Rhipidomys mastacalis, Oecomys gr. concolor, Trinomys moojeni, and Hydrochoerus hydrochaeris. The age of the traces is unknown; therefore, any discussion on its fossil nature is circumstantial. Regardless of its relevance to paleontology, the presence of ichnological features should be considered as an additional cave value, according to the current Brazilian legislation regarding cave protection.


Assuntos
Cavernas , Conservação dos Recursos Naturais/legislação & jurisprudência , Mamíferos/classificação , Paleontologia , Animais
4.
Sci Rep ; 7(1): 11931, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28931837

RESUMO

The evolutionary history of dinosaurs might date back to the first stages of the Triassic (c. 250-240 Ma), but the oldest unequivocal records of the group come from Late Triassic (Carnian - c. 230 Ma) rocks of South America. Here, we present the first braincase endocast of a Carnian dinosaur, the sauropodomorph Saturnalia tupiniquim, and provide new data regarding the evolution of the floccular and parafloccular lobe of the cerebellum (FFL), which has been extensively discussed in the field of palaeoneurology. Previous studies proposed that the development of a permanent quadrupedal stance was one of the factors leading to the volume reduction of the FFL of sauropods. However, based on the new data for S. tupiniquim we identified a first moment of FFL volume reduction in non-sauropodan Sauropodomorpha, preceding the acquisition of a fully quadrupedal stance. Analysing variations in FFL volume alongside other morphological changes in the group, we suggest that this reduction is potentially related to the adoption of a more restricted herbivore diet. In this context, the FFL of sauropods might represent a vestigial trait, retained in a reduced version from the bipedal and predatory early sauropodomorphs.


Assuntos
Evolução Biológica , Cerebelo/anatomia & histologia , Cerebelo/crescimento & desenvolvimento , Dinossauros/anatomia & histologia , Fósseis , Animais , Filogenia , América do Sul , Tomografia Computadorizada por Raios X
5.
Naturwissenschaften ; 98(12): 1035-40, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22083251

RESUMO

Post-Triassic theropod, sauropodomorph, and ornithischian dinosaurs are readily recognized based on the set of traits that typically characterize each of these groups. On the contrary, most of the early members of those lineages lack such specializations, but share a range of generalized traits also seen in more basal dinosauromorphs. Here, we report on a new Late Triassic dinosaur from the Santa Maria Formation of Rio Grande do Sul, southern Brazil. The specimen comprises the disarticulated partial skeleton of a single individual, including most of the skull bones. Based on four phylogenetic analyses, the new dinosaur fits consistently on the sauropodomorph stem, but lacks several typical features of sauropodomorphs, showing dinosaur plesiomorphies together with some neotheropod traits. This is not an exception among basal dinosaurs, the early radiation of which is characterized by a mosaic pattern of character acquisition, resulting in the uncertain phylogenetic placement of various early members of the group.


Assuntos
Dinossauros/anatomia & histologia , Dinossauros/classificação , Fósseis , Animais , Brasil , Filogenia , Crânio/anatomia & histologia
6.
An Acad Bras Cienc ; 83(1): 23-60, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21437375

RESUMO

The record of dinosaur body-fossils in the Brazilian Mesozoic is restricted to the Triassic of Rio Grande do Sul and Cretaceous of various parts of the country. This includes 21 named species, two of which were regarded as nomina dubia, and 19 consensually assigned to Dinosauria. Additional eight supraspecific taxa have been identified based on fragmentary specimens and numerous dinosaur footprints known in Brazil. In fact, most Brazilian specimens related to dinosaurs are composed of isolated teeth and vertebrae. Despite the increase of fieldwork during the last decade, there are still no dinosaur body-fossils of Jurassic age and the evidence of ornithischians in Brazil is very limited. Dinosaur faunas from this country are generally correlated with those from other parts of Gondwana throughout the Mesozoic. During the Late Triassic, there is a close correspondence to Argentina and other south-Pangaea areas. Mid-Cretaceous faunas of northeastern Brazil resemble those of coeval deposits of North Africa and Argentina. Southern hemisphere spinosaurids are restricted to Africa and Brazil, whereas abelisaurids are still unknown in the Early Cretaceous of the latter. Late Cretaceous dinosaur assemblages of south-central Brazil are endemic only to genus or, more conspicuously, to species level, sharing closely related taxa with Argentina, Madagascar, Indo-Pakistan and, to a lesser degree, continental Africa.


Assuntos
Dinossauros/classificação , Paleontologia , Filogeografia , Animais , Brasil , Fósseis
7.
An. acad. bras. ciênc ; 83(1): 23-60, Mar. 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-578285

RESUMO

The record of dinosaur body-fossils in the Brazilian Mesozoic is restricted to the Triassic of Rio Grande do Sul and Cretaceous of various parts of the country. This includes 21 named species, two of which were regarded as nomina dubia, and 19 consensually assigned to Dinosauria. Additional eight supraspecific taxa have been identified based on fragmentary specimens and numerous dinosaur footprints known in Brazil. In fact, most Brazilian specimens related to dinosaurs are composed of isolated teeth and vertebrae. Despite the increase of fieldwork during the last decade, there are still no dinosaur body-fossils of Jurassic age and the evidence of ornithischians in Brazil is very limited. Dinosaur faunas from this country are generally correlated with those from other parts of Gondwana throughout the Mesozoic. During the Late Triassic, there is a close correspondence to Argentina and other south-Pangaea areas. Mid-Cretaceous faunas of northeastern Brazil resemble those of coeval deposits of North Africa and Argentina. Southern hemisphere spinosaurids are restricted to Africa and Brazil, whereas abelisaurids are still unknown in the Early Cretaceous of the latter. Late Cretaceous dinosaur assemblages of south-central Brazil are endemic only to genus or, more conspicuously, to species level, sharing closely related taxa with Argentina, Madagascar, Indo-Pakistan and, to a lesser degree, continental Africa.


O registro osteológico de dinossauros no Mesozóico brasileiro está restrito a rochas triássicas do Rio Grande do Sul e estratos cretáceos de várias partes do país. Isto inclui 21 espécies nominais, sendo duas referidas como nomina dubia, e 19 consensualmente classificadas como dinossauros. Oito táxons supraespecíficos adicionais baseados em material fragmentado e diversas pegadas são conhecidos no Brasil. De fato, a maior parte dos espécimes é composta de dentes isolados e vértebras. Apesar do aumento em trabalhos de campo na última década, não há exemplar esqueletal de dinossauro no Jurássico brasileiro, e é escassa a evidência de Ornithischia. Faunas dinossaurianas aqui registradas são em geral correlatas com aquelas da Pangéia durante o Mesozóico. No Triássico Superior, há uma correspondência próxima com a Argentina e outras regiões sul-gondwânicas. Faunas do Cretáceo médio do nordeste brasileiro são semelhantes às dos depósitos coevos do norte da África e Argentina. Registros de espinossaurídeos no hemisfério sul estão restritos à África e Brasil, enquanto abelissaurídeos não são conhecidos no Cretáceo Inferior deste último. Assembleias de dinossauros da região sul e central do Brasil são endêmicas apenas em nível de gênero e, mais conspicuamente, espécie, compartilhando táxons proximamente relacionados com assembleias da Argentina, Indo-Paquistão, e, num menor grau, África continental.


Assuntos
Animais , Dinossauros/classificação , Paleontologia , Filogeografia , Brasil , Fósseis
8.
Biol Rev Camb Philos Soc ; 85(1): 55-110, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19895605

RESUMO

The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis, and Panphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as "all descendants of the most recent common ancestor of birds and Triceratops". Recent cladistic analyses of early dinosaurs agree that Pisanosaurus mertii is a basal ornithischian; that Herrerasaurus ischigualastensis and Staurikosaurus pricei belong in a monophyletic Herrerasauridae; that herrerasaurids, Eoraptor lunensis, and Guaibasaurus candelariensis are saurischians; that Saurischia includes two main groups, Sauropodomorpha and Theropoda; and that Saturnalia tupiniquim is a basal member of the sauropodomorph lineage. On the contrary, several aspects of basal dinosaur phylogeny remain controversial, including the position of herrerasaurids, E. lunensis, and G. candelariensis as basal theropods or basal saurischians, and the affinity and/or validity of more fragmentary taxa such as Agnosphitys cromhallensis, Alwalkeria maleriensis, Chindesaurus bryansmalli, Saltopus elginensis, and Spondylosoma absconditum. The identification of dinosaur apomorphies is jeopardized by the incompleteness of skeletal remains attributed to most basal dinosauromorphs, the skulls and forelimbs of which are particularly poorly known. Nonetheless, Dinosauria can be diagnosed by a suite of derived traits, most of which are related to the anatomy of the pelvic girdle and limb. Some of these are connected to the acquisition of a fully erect bipedal gait, which has been traditionally suggested to represent a key adaptation that allowed, or even promoted, dinosaur radiation during Late Triassic times. Yet, contrary to the classical "competitive" models, dinosaurs did not gradually replace other terrestrial tetrapods over the Late Triassic. In fact, the radiation of the group comprises at least three landmark moments, separated by controversial (Carnian-Norian, Triassic-Jurassic) extinction events. These are mainly characterized by early diversification in Carnian times, a Norian increase in diversity and (especially) abundance, and the occupation of new niches from the Early Jurassic onwards. Dinosaurs arose from fully bipedal ancestors, the diet of which may have been carnivorous or omnivorous. Whereas the oldest dinosaurs were geographically restricted to south Pangea, including rare ornithischians and more abundant basal members of the saurischian lineage, the group achieved a nearly global distribution by the latest Triassic, especially with the radiation of saurischian groups such as "prosauropods" and coelophysoids.


Assuntos
Evolução Biológica , Dinossauros/classificação , Dinossauros/genética , Animais , Extinção Biológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA