Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 341: 118015, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150173

RESUMO

Agriculture produces food, fiber and biofuels for the world's growing population, however, agriculture can be a major contributor of nitrogen (N) losses including emissions of ammonia (NH3), nitrous oxide (N2O) and nitrate (NO3-) leaching and runoff. A Canadian Agricultural Nitrogen Budget for Reactive N (CANBNr) model was developed to estimate the soil N balance in 3487 soil landscape of Canada polygons from 1981 to 2016. The CANBNr model integrates NH3 emission from fertilizers, manure from housing, storage and field, as well as direct/indirect N2O emissions from fertilizers, manures, crop residues and soil organic matter. The NO3- leaching is estimated based on the residual soil N (RSN) at harvest and drainage derived with the DeNitrification-DeComposition (DNDC) model. From 1981 to 2016, the N input from fertilizer and N fixation increased at a greater rate than N removal in harvested crops in all provinces of Canada, resulting in an increase in the RSN and N losses. In 2016, the Prairie provinces had lower N losses (11.7 kg N ha-1) from N2O, NH3 and NO3- compared with 43.2 kg N ha-1 in central Canada, and 76.5 kg N ha-1 in Atlantic Canada. However, the Prairie provinces had 84.3% of the total Canadian farmland (74.3% of the total Canadian N input), while central Canada had 12.9% of Canadian farmland (21.7% of the total Canadian N input). In the Prairie provinces, the total N2O loss from fertilizer N ranged 4.4-8.6 Gg N whereas NH3 loss ranged from 17.1 to 44.6 Gg N and these values were influenced by both emission intensity and total land area. Total N2O losses from manure were highest in Alberta, Ontario and Quebec resulting in 4.8, 4.4, and 3.4 Gg N and NH3 losses from manure were also highest in these 3 provinces at 61.1, 45.2 and 40.4 Gg N, respectively. Nitrate leaching was impacted by drainage volumes, soil type and N inputs. In the non-growing season, NO3- leaching losses (36-yr average) were 63.3 Gg in Ontario and 57.5 Gg N in Quebec compared with 20.8 Gg N for Ontario and 35.5 Gg N for Quebec in the growing season. In contrast, the Prairie provinces showed higher NO3- leaching in the growing season (23.1-37.4 Gg N) than in the non-growing season (10.4-13.7 Gg N). In summary, total fertilizer N increased the most over the 36 years in the Prairies which resulted in increased RSN and N leaching losses that will require further intervention.


Assuntos
Fertilizantes , Solo , Solo/química , Nitratos , Esterco , Agricultura , Nitrogênio/análise , Ontário , Produtos Agrícolas , Óxido Nitroso/análise
2.
J Environ Qual ; 51(4): 494-509, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35567799

RESUMO

Nutrient circularity can help supply chain participants meet sustainability targets. Across the segmented beef supply chain, opportunity exists to reinforce and introduce nutrient circularity by recycling surplus manure nutrients from cattle feedlots to lands where cattle feed is produced. We describe four datasets developed to evaluate options in U.S. and Canadian beef systems. The datasets delineate three "circular manuresheds," each encompassing a hay-grazing landscape where beef cattle are raised on grazingland and supplemented with hay grown nearby, and the distant feedlots where those cattle produce manure nutrients for potential import back to the hayfields. We selected the hay-grazing landscapes of New Mexico, USA; Florida, USA; and western Canada (Manitoba, Saskatchewan, Alberta, British Columbia) because of their significant grazingland production and potential to substitute feedlot manure for commercial fertilizer on hayfields. In each circular manureshed, the manure nutrients from major feedlot destinations could supply a considerable proportion of the P used by hay for grazing cattle: 34% of the P requirements in New Mexico, 36% in Florida, and 6% in western Canada. The average distance to return the resource was 647 km for New Mexico, 1,884 km for Florida, and 1,587 km for western Canada. These magnitudes and distances suggest that the New Mexico circular manureshed may be the most economically viable in the current agri-food system, but this reflects only part of a greater, multi-factor assessment of tradeoffs. The circular manureshed concept provides a platform for simultaneous consideration of competing factors for sustainability via circularity.


Nutrient circularity can help animal supply chain participants meet sustainability goals. The manureshed concept can help willing consortia operationalize nutrient circularity. Data delineate three circular manuresheds where feedlot manure is recycled onto hayfields in landscapes where feedlot cattle originated. Available nutrients and transport distances for the three circular manuresheds are calculated. These findings can inform a comprehensive assessment of tradeoffs of circular manureshed management.


Assuntos
Fertilizantes , Esterco , Alberta , Animais , Bovinos , Florida , Humanos , Nutrientes , Estados Unidos
3.
Sci Total Environ ; 716: 135374, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31839316

RESUMO

It is uncertain whether process-based models are currently capable of simulating the complex soil, plant, climate, manure management interactions that influence soil nitrous oxide (N2O) emissions from perennial cropping systems. The objectives of this study were (1) to calibrate and evaluate the DeNitrification DeComposition (DNDC) model using multi-year datasets of measured nitrous oxide (N2O) fluxes, soil moisture, soil inorganic nitrogen, biomass and soil temperature from managed grasslands applied with manure slurry in contrasting climates of Canada, and (2) to simulate the impact of different manure management practices on N2O emissions including slurry application i) rates (for both single vs. split); and ii) timing (e.g., early vs. late spring). DNDC showed "fair" to "excellent" performance in simulating biomass (4.7% ≤ normalized root mean square error (NRMSE) ≤ 29.8%; -9.5% ≤ normalized average relative error (NARE) ≤ 16.1%) and "good" performance in simulating soil temperature (13.2% ≤ NRMSE ≤ 18.1%; -0.7% ≤ NARE ≤ 10.8%) across all treatments and sites. However, the model only showed "acceptable" performances in estimating soil water and inorganic N contents which was partially attributed to the limitation of a cascade water sub-model and inaccuracies in simulating root development/uptake. Although, the DNDC model only demonstrated "fair" performance in simulating daily N2O fluxes, it generally captured the impact of the timing and rate of slurry application and soil texture (loam vs. sandy loam) on total N2O emissions. The DNDC model simulated N2O emissions from spring better than split manure application (fall and spring) at the Manitoba site partially due to the overestimation of available substrates for microbial denitrification from fall application during the wet spring periods. Although DNDC performed adequately for simulating most of the manure management impacts considered in this study we recommend improvements in the simulation of soil freeze-thaw cycles, manure decomposition dynamics, soil water storage, rainfall canopy interception, and microbial denitrification and nitrification activities in grasslands.


Assuntos
Esterco , Canadá , Fertilizantes , Pradaria , Nitrogênio , Óxido Nitroso , Solo
4.
J Environ Manage ; 244: 462-471, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31154109

RESUMO

Urban centres acquire and accumulate many materials from their hinterland, among these are nutrient elements such as nitrogen (N). The popular North American vision of a peri-urban setting is one where urban food production, composting and re-cycling are assumed to limit urban accumulation of nutrients. This study quantifies this assumption using the Lower Fraser Valley (LFV) of British Columbia as an example, ideal because it is surrounded by mountains, ocean and an international border which collectively delimit the peri-urban boundaries. Nitrogen influxes are dominated by livestock feed imports to support dairy and poultry production (18000 tonnes N), followed by human food imports (9210 tonnes N), as well as 5410 tonnes N as fertilizer and 4690 tonnes N in atmospheric deposition. There is a transfer of 6700 tonnes N from agricultural to urban ecosystems displacing food imports, but food production contributes to the N footprint of the LFV. Nitrogen effluxes are dominated by sewage disposal (10400 tonnes N), solid waste disposal (7020 tonnes N) and atmospheric emissions (9460 tonnes N). The total influx is 15 kg N per person, the net influx is 3.1 kg N per person. Per unit land area, these are a total influx of 24 kg N/ha and a net influx of 4.7 kg N/ha. The atmospheric emissions are 4.7 kg N per person and 7.2 kg/ha. The N in soil is mobile and it is assumed soil N is at a steady state concentration, thus the surplus N is lost from the soil, probably by leaching and runoff. The Fraser River is estimated to acquire and transport 5230 tonnes N from the region into the ocean each year, in addition to 10300 tonnes N from sewage outfall. This is coupled with effluxes of phosphorus (estimated previously), and the result probably has an impact on the coastal waters. There is little reuse of imported N and current waste management practices including composting and combustion do little to improve N efficiency.


Assuntos
Ecossistema , Ciclo do Nitrogênio , Animais , Colúmbia Britânica , Fertilizantes , Humanos , Nitrogênio
5.
J Environ Qual ; 47(4): 893-901, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30025037

RESUMO

Removing solids from whole dairy slurry (WS) can reduce P loading on fields. This study investigated the effects of 11 yr of applications of WS, separated liquid fraction (LF), commercial fertilizer, WS plus fertilizer, and a control on total and extractable (Kelowna) soil P in perennial grass ( Schreb.) and two subsequent silage corn ( L.) crops. Plots received 200 kg N ha with or without 40 kg P ha. Shoot biomass, P uptake, arbuscular mycorrhizal fungi root colonization, and soil microbial P were determined for corn at six leaves. Whole-crop and grain yield, P uptake, dry matter, and grain content were determined at maturity. The LF treatment received 30% less manure P than WS, had lower extractable soil P at 0 to 15 and 15 to 30 cm, and had lower total P at 0 to 15 cm. Historical treatments had no effect on soil microbial P or arbuscular mycorrhizal fungi colonization. At six leaves, corn shoot biomass, P concentration, and P uptake were related to historical P rates in Year 2, but the relationship was not apparent in Year 1. Starter P fertilizer increased shoot yield and P uptake for all treatments in both years. At maturity, most yield parameters for WS and LF were similar in Year 1, but in Year 2, there was a significant response to starter P fertilizer and a positive relationship between historical P rate and corn performance. This study shows that long-term LF treatments reduced the risk of P pollution with relatively little effect on the P response of subsequent corn crops.


Assuntos
Fósforo/análise , Poaceae , Silagem , Zea mays , Fertilizantes , Solo
6.
Waste Manag ; 70: 45-52, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28931476

RESUMO

Recent developments in composting technology enable dairy farms to produce their own bedding from composted manure. This management practice alters the fate of carbon and nitrogen; however, there is little data available documenting how gaseous emissions are impacted. This study measured in-situ emissions of methane (CH4), carbon dioxide (CO2), nitrous oxide (N2O), and ammonia (NH3) from an on-farm solid-liquid separation system followed by continuously-turned plug-flow composting over three seasons. Emissions were measured separately from the continuously-turned compost phase, and the compost-storage phase prior to the compost being used for cattle bedding. Active composting had low emissions of N2O and CH4 with most carbon being emitted as CO2-C and most N emitted as NH3-N. Compost storage had higher CH4 and N2O emissions than the active phase, while NH3 was emitted at a lower rate, and CO2 was similar. Overall, combining both the active composting and storage phases, the mean total emissions were 3.9×10-2gCH4kg-1 raw manure (RM), 11.3gCO2kg-1 RM, 2.5×10-4g N2O kg-1 RM, and 0.13g NH3 kg-1 RM. Emissions with solid-separation and composting were compared to calculated emissions for a traditional (unseparated) liquid manure storage tank. The total greenhouse gas emissions (CH4+N2O) from solid separation, composting, compost storage, and separated liquid storage were reduced substantially on a CO2-equivalent basis compared to traditional liquid storage. Solid-liquid separation and well-managed composting could mitigate overall greenhouse gas emissions; however, an environmental trade off was that NH3 was emitted at higher rates from the continuously turned composter than reported values for traditional storage.


Assuntos
Poluentes Atmosféricos/análise , Amônia/análise , Compostagem/métodos , Indústria de Laticínios , Monitoramento Ambiental , Dióxido de Carbono/análise , Fazendas , Gases de Efeito Estufa/análise , Metano/análise , Nitrogênio/análise
7.
J Environ Manage ; 187: 286-297, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27914350

RESUMO

Excess phosphorus (P) in peri-urban regions is an emerging issue, whereas there is global depletion of quality mined supplies of P. The flow of P across the landscape leading to regional surpluses and deficits is not well understood. We computed a regional P budget with internal P flows in a fairly discreet peri-urban region (Lower Fraser Valley, BC) with closely juxtaposed agricultural and non-agricultural urban ecosystems, in order to clarify the relationship between food production, food consumption and other activities involving use of P (e.g. keeping pets and horses and using soaps). We hypothesized changes that might notably improve P efficiency in peri-urban settings and wider regions. Livestock feed for the dairy and poultry sectors was the largest influx of P: the peri-urban land is too limited to grow feed grains and they are imported from outside the region. Fertilizer and import of food were the next largest influxes of P and a similar amount of P flows as food from the agricultural to urban ecosystems. Export of horticultural crops (berries and greenhouse crops) and poultry represented agricultural effluxes that partially offset the influxes. P efficiency was lower for horticultural production (21%) than animal production (32%), the latter benefited from importing feed crops, suggesting a regional advantage for animal products. There was 2.0, 3.8, 5.7 and 5.6 tonnes imported P per $ million farm cash receipts for horticulture, dairy, poultry meat and eggs. Eliminating fertilizer for corn and grass would reduce the ratio for the dairy industry. The net influx, dominated by fertilizer, animal feed and food was 8470 tonnes P per year or 3.2 kg P per person per year, and of this the addition to agricultural soils was 3650 tonnes P. The efflux in sewage effluent to the sea was 1150 tonnes P and exported sewage solids was 450 tonnes P. Municipal solid waste disposal was most difficult to quantify and was about 1800 tonnes P, 80% of which was partly reused in the urban regions and partly sequestered in landfill, which may be considered an efflux or a surplus. Reuse of rendering waste for feeding poultry significantly reduced P importation, but no rendering waste is used for cattle due to health concerns. Sensitivity analysis showed that variation in human population and the amount of P consumed per person in chicken and dairy products had the most influence on the total movement of P from agricultural to urban-ecosystems. There are current farm practices that mitigate P surpluses and new technologies are being developed to further reduce farm imbalances. However, current waste management policies that promote practices such composting of home wastes and exporting of poultry manure and biosolids to semiarid rangeland do little to enhance overall P cycling because the P is not returned to the farms producing feed and food for the peri-urban region. Sequestering in landfills may be a better solution until better ways are found to return surplus P.


Assuntos
Indústria Alimentícia , Fósforo/análise , Agricultura , Ração Animal/análise , Animais , Bovinos , Produtos Agrícolas , Ecossistema , Meio Ambiente , Fertilizantes , Geografia , Humanos , Resíduos Industriais , Esterco , Aves Domésticas , Eliminação de Resíduos , Esgotos , Solo , Instalações de Eliminação de Resíduos , Gerenciamento de Resíduos
8.
J Environ Qual ; 41(4): 1290-300, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22751074

RESUMO

Physical, chemical, or biological treatment of animal liquid manure generally produces a dry-matter rich fraction (DMF) that contains most of the initial phosphorus (P). Our objective was to assess the solubility and plant availability of P from various DMFs as a function of soil P status. Eight different DMFs were obtained from liquid swine (LSM) and dairy cattle (LDC) manures treated by natural decantation, anaerobic digestion, chemical flocculation, composting, or mechanical separation. The DMFs were compared with mineral P fertilizer in a pot experiment with oat ( L.) grown in four soils with varied P-fixing capacities and P saturation levels. The DMFs were added at a rate of 50 mg P kg soil and incubated 14 d before seeding. Soil water-extractable P (P) at all water:soil extraction ratios (2:1, 20:1, and 200:1) was slightly higher when DMFs were derived from LDC rather than LSM. Soil P at the 2:1 ratio was lower with anaerobically digested LSM. At the 2:1 extraction ratio, DMF P was less soluble than mineral P as P saturation in soils increased. In soils with a lower P-fixing capacity, DMF P appeared less water soluble than mineral P under 20:1 and 200:1 extraction ratios. After 72 d of plant growth, DMFs produced yields comparable to mineral P fertilizer. Although the plant availability of P from DMFs was comparable to mineral P fertilizer, P from DMFs could be less vulnerable to leaching or runoff losses in soils with a high P saturation level or low P-fixing capacity.


Assuntos
Avena/metabolismo , Esterco/análise , Fósforo/química , Fósforo/metabolismo , Solo/química , Água/química , Anaerobiose , Animais , Avena/efeitos dos fármacos , Avena/crescimento & desenvolvimento , Biomassa , Bovinos , Suínos
9.
J Environ Qual ; 41(2): 582-91, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22370420

RESUMO

Efficient use of manure nutrients by crops is necessary to minimize losses to the environment. This field study examined the possibility of replacing side-banded mineral P with precision-placed high-P sludge (6.2-11.0% dry matter) obtained after settling dairy manure slurry. The sludge was injected at about 30 kg P ha (36.0-51.2 m ha) into the soil at corn row spacing, and the corn was planted 5, 10, and 15 cm beside the injection furrow. Controls included no added P and side-banded commercial P fertilizer. The treatments were tested on corn with low and high root colonization by arbuscular mycorrhizae (AM). The study showed that sludge did not impede AM root colonization, corn germination, or seedling growth. Corn plants with both high and low levels of AM colonization responded to the sludge from the three-leaf stage and showed the greatest benefit at the six-leaf stage. Corn responded more to sludge placed at 5 than at 15 cm from the corn rows, whereas the response at the 10-cm spacing was intermediate. There was little difference in seedling growth or final harvest parameters between the side-banded fertilizer P and the 5-cm sludge treatment. The results show a new way to use manure nutrients, namely precision-placement sludge for corn. This may obviate the need for chemical fertilizers for improving farm nutrient balances. Other anticipated benefits are less energy use for hauling and injection of the sludge fraction and reduced risk of nutrient loss by runoff and volatilization (ammonia) and nuisance odors due to injection.


Assuntos
Indústria de Laticínios , Fertilizantes , Fósforo/metabolismo , Esgotos , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Micorrizas/efeitos dos fármacos , Micorrizas/crescimento & desenvolvimento , Fósforo/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Esgotos/química , Zea mays/efeitos dos fármacos , Zea mays/microbiologia
10.
J Environ Qual ; 40(2): 393-401, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21520746

RESUMO

Removing solids from slurry manure helps balance nutrients to plant needs and may increase soil infiltration rate toreduce loss of ammonia. The long-term effects of applying the separated liquid fraction (SLF) of dairy slurry with surface banding applicators are not well known. This 6-yr study compared the yield, N recovery, and stand persistence of tall fescue (Festuca arundinacea Schreb.) receiving SLF at 300 (SLF300) and 400 (SLF400) kg ha(-1) yr(-1) of total ammoniacal N (TAN); whole dairy slurry (WS) at 200 (WS200), 300 (WS300), and 400 (WS400) kg TAN ha(-1) yr(-1); and mineral fertilizerat 300 kg N ha(-1) yr(-1). The slurries were applied four times per year by surface banding, a technique that reduces ammonia emission and canopy contamination. Grass yield and N uptake were significantly higher for SLF300 than WS300 atequivalent rates of TAN. At similar total N, yield and N uptake were much greater for SLF than WS (2 Mg DM ha(-1) and 75 kg N ha(-1), respectively). Apparent total N recoverywas 63% greater for SLF300 than WS300 due to less ammonia loss and less immobile N. The apparent recovery of total N was 31% higher for Fert300 than for SLF300. Yield and N uptake for SLF300 and WS300 were similar in Harvests 1 and4, but SLF had higher values under hot and dry conditions in Harvests 2 and 3. Using SLF rather than WS will increase crop yield and allow higher application volumes near barns, whichwill reduce hauling costs.


Assuntos
Agricultura/métodos , Esterco , Poaceae , Animais , Bovinos , Produtos Agrícolas , Nitrogênio/metabolismo
11.
J Environ Qual ; 38(4): 1372-82, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19465712

RESUMO

Rapid infiltration of liquid manure into the soil reduces emissions of ammonia (NH(3)) into the atmosphere. This study was undertaken to assess the effects of two low-cost methods of assisting infiltration of applied dairy slurry on emissions of NH(3), nitrous oxide (N(2)O), and on crop N uptake. The two methods were removing of solids by settling-decantation to make the manure less viscous and mechanically aerating the soil. Ammonia emissions were measured with wind tunnels as percentage of applied total ammoniacal nitrogen (TAN) while emissions of N(2)O were measured with vented chambers. Mechanically aerating the soil before manure application significantly reduced emissions of NH(3) relative to the nonaerated soil in spring (38.6 to 20.3% of applied TAN), summer (41.1 to 26.4% of applied TAN) and fall (27.7 to 13.6% of applied TAN) trials. Decantation of manure had no effect on NH(3) emissions in spring, tended to increase emissions in summer and significantly decreased emissions in fall (30.3 to 11.1% of applied TAN). Combining the two abatement techniques reduced NH(3) emission by 82% in fall, under cool weather conditions typical of manure spreading. The two abatement techniques generally did not significantly affect N(2)O emissions. Uptake of applied N by Italian ryegrass (Lolium multiflorum Lam.) was generally significantly greater with decanted than from whole manure but the effect of aeration was generally small and not significant. The study shows that low cost methods that assist manure infiltration into the soil may be used to greatly reduce ammonia loss without increasing N(2)O emissions, but efficacy of abatement methods is affected by weather conditions.


Assuntos
Amônia/metabolismo , Indústria de Laticínios , Nitrogênio/metabolismo , Óxido Nitroso/metabolismo , Solo , Produtos Agrícolas/metabolismo
12.
J Dairy Sci ; 90(2): 1063-72, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17235186

RESUMO

This study investigated the feasibility of altering the dietary cation-anion difference (DCAD) in grass by altering the grass variety and the amount and formulation of K fertilizer application. In experiment 1, treatments were combinations of 2 varieties (Barcel and Hi-Mag) of tall fescue (Festuca arundinacea Schreb); 2 rates of K (0 and 250 kg/ha), supplied as KCl; and 2 rates of Mg (0 and 60 kg/ha), supplied as MgO. In experiment 2, K fertilizer was applied at 0 or 125 kg/ha as KCl or K2SO4. There was no difference between HiMag and Barcel tall fescue in the concentrations of Mg, S, and Cl. Application of K fertilizer decreased concentrations of Mg, but the magnitude of the decrease was not consistent across harvests. Conversely, application of Mg fertilizer increased Mg concentrations, but again, the magnitude of the increase was not consistent across harvests. The concentrations of Ca were higher in HiMag than in Barcel tall fescue, with the magnitude of the difference increasing from first to last harvest. Potassium fertilizer decreased Ca concentrations in the first, fourth, and fifth harvests only. Calcium concentration was decreased by a greater magnitude in HiMag tall fescue as a result of Mg fertilization. The HiMag tall fescue contained lower concentrations of K than did Barcel tall fescue in the first, second, and third harvests. Application of K fertilizer increased the K concentration in all 5 harvests but did not affect Na concentrations except in the last harvest. The HiMag tall fescue contained less Na than did Barcel, but the magnitude of the difference was affected by K and Mg fertilization. Application of K fertilizer decreased S concentrations in first-harvest grass, increased concentrations in second-and third-harvest grasses, and had no effect in fourth-or fifth-harvest grasses. Application of Mg fertilizer decreased S concentrations of tall fescue. Application of K fertilizer increased DCAD values for grass harvested from the second through fifth harvests. The increase in DCAD attributable to K fertilizer was less in HiMag than in Barcel tall fescue. Application of K fertilizer as K2SO4 increased dry matter yield and S concentrations of HiMag tall fescue, whereas K applied as KCl increased concentrations of K and Cl. There was no effect of fertilizer formulation on Na concentrations. The DCAD was lower in HiMag tall fescue fertilized with K2SO4 compared with that fertilized with KCl. This study showed that DCAD of grass can be manipulated by the choice of grass variety, fertilizer formulation, and fertilizer application rate.


Assuntos
Ânions/análise , Cátions/análise , Fertilizantes , Festuca/química , Minerais/análise , Potássio/administração & dosagem , Ração Animal/análise , Animais , Cálcio/análise , Cloretos/análise , Dieta , Festuca/crescimento & desenvolvimento , Magnésio/administração & dosagem , Magnésio/análise , Potássio/análise , Cloreto de Potássio/administração & dosagem , Sódio/análise , Sulfatos/administração & dosagem
13.
Bioresour Technol ; 98(17): 3249-58, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16949815

RESUMO

Sleigh-foot application of slurry manure is the best method for applying slurry manure on many forage fields. This study was designed to assess agronomic effectiveness of multi-year surface banding of dairy slurry on a sward of tall fescue (Festuca arundinacea Schreb.). Our study showed that with this application technology, crop recovery of total-N from applied manure in the long-term is only about 77% that of mineral fertilizer. Despite relative inefficiency of N uptake from manure, yield response to manure equaled that to fertilizer at equivalent total-N rates although N-recovery was significantly lower. About 26-32% of applied manure-N was stored in soil organic matter and the buildup of soil-N was related to application rate of organic N. At moderate applications rates (approx. 400 kg Nha(-1)a(-1)), soil N accumulated at about 120 kg ha(-1) annually compared to 98 kg ha(-1)a(-1) of unaccounted N, much of that probably volatilized and denitrified. Alternating between manure and fertilizer improved productivity per unit land area without increasing the rate of N non-recovery per unit of feed produced.


Assuntos
Bovinos , Indústria de Laticínios , Festuca/metabolismo , Eliminação de Resíduos Líquidos/métodos , Agricultura/métodos , Animais , Fertilizantes , Fatores de Tempo
14.
J Environ Qual ; 35(3): 903-11, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16641328

RESUMO

The effect of mechanically aerating grassland before liquid manure application in the fall on surface runoff and transport of nutrients and solids was studied in a high rainfall area. The two treatments were control and aeration, the latter receiving one pass with an aerator perpendicular to the slope before fall application of liquid manure (dairy in Years 1-3 and swine in Year 4). Treatments were randomly assigned on 3 to 5% sloping land with a silt loam surface soil (Aquic Dystroxerept) planted in orchardgrass (Dactylis glomerata L.). Runoff from natural rainfall events was sampled for nutrient and solids analysis. Aeration significantly reduced runoff and loads of suspended solids, total Kjeldahl N (TKN), and dissolved reactive P in all years. Annual runoff amounts were reduced by 47 to 81%, suspended and volatile solid loads by 48 to 69% and 42 to 83%, respectively, TKN loads by 56 to 81%, and total P (TP) loads by 25 to 75%. Loads of the soluble nutrient NH4-N, dissolved reactive P, and K were reduced by 41 to 83%. The first three runoff events after manure application accounted for approximately one-third of the annual total runoff and solid and nutrient loads when averaged across treatments, with loads of TKN, K, and NH4-N totaling 4.4, 3.3, and 1.9 kg ha-1, respectively. Aeration slightly increased downward movement of NO3-N, but not other nutrients in the soil. Thus mechanical aeration can be an effective tool for reducing runoff and loads of solids and nutrients after surface application of liquid manure on sloping grassland.


Assuntos
Esterco , Poaceae , Chuva , Água/química , Ar
15.
J Nematol ; 37(2): 207-13, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19262862

RESUMO

Various manures and composts have been reported to reduce population densities of plant-parasitic nematodes. Dairy manure slurry is often used as a primary source of nitrogen for forage crops. This study was conducted to determine the effects of dairy manure on population densities of Pratylenchus penetrans parasitizing tall fescue. Beginning in 1994, dairy manure and inorganic fertilizer were applied after each harvest (2 to 4 times/year) at rates of 50 and 100 kg NH-N/ha; control plots were not treated. Nematode populations in soil and roots were determined at 19 sample dates during the fourth (1997), fifth (1998), and sixth (1999) years of manure and fertilizer applications. The sustained use of dairy manure and fertilizer increased population densities of P. penetrans. Our results contrast with many previous studies demonstrating that application of manures decreases population densities of plant-parasitic nematodes. Frequent applications of moderate amounts of manure to a perennial grass crop may have prevented the development of nematode-toxic levels of ammonia or other toxic substances such as nitrous acid or volatile fatty acids. Two years with no additional manure applications were required for P. penetrans population densities to return to levels similar to fertilized or untreated soil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA