Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 214: 108915, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38972240

RESUMO

Copper (Cu) toxicity in crops is a result of excessive release of Cu into environment. Little is known about mitigation of Cu toxicity through the application of carbon-based nanomaterials including water-soluble fullerene C60 derivatives. Two derivatives of fullerene were examined: polyhydroxylated C60 (fullerenol) and arginine C60 derivative. In order to study the response of Cu-stressed plants (Cucumis sativus L.) to these nanomaterials, metabolomics analysis by gas chromatography-mass spectrometry (GC-MS) was performed. Excess Cu (15 µM) caused substantial increase in xylem sap Cu, retarded dry biomass and leaf chlorosis of hydroponically grown cucumber. In Cu-stressed leaves, metabolomes was disturbed towards suppression metabolism of nitrogen (N) compounds and activation metabolism of hexoses. Also, upregulation of some metabolites involving in antioxidant defense system, such as ascorbic acid, tocopherol and ferulic acid, was occurred in Cu-stressed leaves. Hydroponically added fullerene adducts decreased the xylem sap Cu and alleviated Cu toxicity with effectiveness has been most pronounced for arginine C60 derivative. Metabolic responses of plants subjected to high Cu with fullerene derivatives were opposite to that observed under Cu alone. Fatty acids up-regulation (linolenic acid) and antioxidant molecules (tocopherol) down-regulation might indicate that arginine C60 adduct can alleviate Cu induced oxidative stress. Although fullerenol slightly improved cucumber growth, its effect on metabolic state of Cu-stressed plants was not statistically significant. We suggest that tested fullerene C60 adducts have a potential to prevent Cu toxicity in plants through a mechanism associated with their capability to restrict xylem transport of Cu from roots to shoot, and to maintain antioxidative properties of plants.


Assuntos
Cobre , Cucumis sativus , Fulerenos , Fulerenos/farmacologia , Fulerenos/metabolismo , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/metabolismo , Cucumis sativus/crescimento & desenvolvimento , Cobre/toxicidade , Cobre/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/metabolismo
2.
Environ Geochem Health ; 46(1): 13, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38147148

RESUMO

Widespread soil contamination with oil and the toxicity of petroleum hydrocarbons to soil biota make it extremely important to study microbial responses to oil stress. Soil metabolites reflect the main metabolic pathways in the soil microbial community. The examination of changes in the soil metabolic profile and metabolic function is essential for a better understanding of the nature of the pollution and restoration of the disturbed soils. The present study aimed to assess the long-term effect of oil on the ecological state of the soil, evaluate quantitative and qualitative differences in metabolite composition between soil contaminated with oil and non-contaminated soil, and reveal biologically active metabolites that are related to oil contamination and can be used for contamination assessment. A long-term field experiment was conducted to examine the effects of various oil concentrations on the biochemical properties and metabolic profile of the soil. Podzolic soil contaminated with oil demonstrated the long-term inhibition of soil biological activity and vegetation. Oil affected the metabolic activity of soil fungi increasing the production of toxic metabolites. A metabolomic approach was employed to determine soil metabolites. The metabolite profile was found to vary greatly between oil-contaminated and non-contaminated soils. Carbohydrates had the largest number of metabolites negatively affected by oil, while the content of organic acids, phenolic compounds, and terpenoids was mainly increased in oil-contaminated soil. The evaluation of the long-term impact of oil on microbial metabolism can make a valuable contribution to the assessment of soil quality and the activity of soil microorganisms being under stress from oil pollution. The results contribute to a further understanding of the role of microorganisms in the ecological functions of contaminated soil, which can be useful in the development of rehabilitation strategies for disturbed sites.


Assuntos
Medicina , Microbiota , Metabolômica , Poluição Ambiental , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA