Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775704

RESUMO

Silver compounds are mainly studied as antimicrobial agents, but they also have anticancer properties, with the latter, in some cases, being better than their gold counterparts. Herein, we analyse the first example of a new Ag(I)-biscarbene that can bind non-canonical structures of DNA, more precisely G-quadruplexes (G4), with different binding signatures depending on the type of G4. Moreover, we show that this Ag-based carbene binds the i-motif DNA structure. Alternatively, its Au(I) counterpart, which was investigated for comparison, stabilises mitochondrial G4. Theoretical in silico studies elucidated the details of different binding modes depending on the geometry of G4. The two complexes showed increased cytotoxic activity compared to cisplatin, overcoming its resistance in ovarian cancer. The binding of these new drug candidates with other relevant biosubstrates was studied to afford a more complete picture of their possible targets. In particular, the Ag(I) complex preferentially binds DNA structures over RNA structures, with higher binding constants for the non-canonical nucleic acids with respect to natural calf thymus DNA. Regarding possible protein targets, its interaction with the albumin model protein BSA was also tested.

2.
J Inorg Biochem ; 256: 112567, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38669911

RESUMO

AS101 (Ammonium trichloro (dioxoethylene-O,O') tellurate) is an important hypervalent Te-based prodrug. Recently, we started a systematic investigation on AS101 with the aim to correlate its promising biological effects as a potent immunomodulator drug with multiple medicinal applications and its specific chemical properties. To date, a substantial agreement on the rapid conversion of the initial AS101 species into the corresponding TeOCl3- anion does exist, and this latter species is reputed as the pharmacologically active one. However, we realized that TeOCl3- could quickly undergo further steps of conversion in an aqueous medium, eventually producing the TeO2 species. Using a mixed experimental and theoretical investigation approach, we characterized the conversion process leading to TeO2 occurring both in pure water and in reference buffers at physiological-like pH. Our findings may offer a valuable "chemical tool" for a better description, interpretation -and optimization- of the mechanism of action of AS101 and Te-based compounds. This might be a starting point for improved AS101-based medicinal application.


Assuntos
Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/química
3.
Inorg Chem ; 62(31): 12453-12467, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37478132

RESUMO

We report the synthesis and the assessment of the anticancer potential of two series of diruthenium biscyclopentadienyl carbonyl complexes. Novel dimetallacyclopentenone compounds (2-4) were obtained (45-92% yields) from the thermal reaction (PhCCPh exchange) of [Ru2Cp2(CO)(µ-CO){µ-η1:η3-C(Ph)═C(Ph)C(═O)}], 1, with alkynes HCCR [R = C5H4FeCp (Fc), 3-C6H4(Asp), 2-naphthyl; Cp = η5-C5H5, Asp = OC(O)-2-C6H4C(O)Me]. Protonation of 1-3 by HBF4 afforded the corresponding µ-alkenyl derivatives 5-7, in 40-86% yields. All products were characterized by IR and NMR spectroscopy; moreover, cyclic voltammetry (1, 2, 5, 7) and single-crystal X-ray diffraction (5, 7) analyses were performed on representative compounds. Complexes 5-7 revealed a cytotoxic activity comparable to that of cisplatin in A549 (lung adenocarcinoma), SW480 (colon adenocarcinoma), and ovarian (A2780) cancer cell lines, and 2, 5, 6, and 7 overcame cisplatin resistance in A2780cis cells. Complexes 2, 5, and 7 (but not the aspirin derivative 6) induced an increase in intracellular ROS levels. Otherwise, 6 strongly stabilizes and elongates natural DNA (from calf thymus, CT-DNA), suggesting a possible intercalation binding mode, whereas 5 is less effective in binding CT-DNA, and 7 is ineffective. This trend is reversed concerning RNA, and in particular, 7 is able to bind poly(rA)poly(rU) showing selectivity for this nucleic acid. Complexes 5-7 can interact with the albumin protein with a thermodynamic signature dominated by hydrophobic interactions. Overall, we show that organometallic species based on the Ru2Cp2(CO)x scaffold (x = 2, 3) are active against cancer cells, with different incorporated fragments influencing the interactions with nucleic acids and the production of ROS.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias do Colo , Neoplasias Ovarianas , Humanos , Feminino , Linhagem Celular Tumoral , Cisplatino , Espécies Reativas de Oxigênio , Neoplasias Ovarianas/tratamento farmacológico , DNA , Antineoplásicos/química
4.
J Am Chem Soc ; 145(27): 14963-14980, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37379365

RESUMO

To investigate the potential of tumor-targeting photoactivated chemotherapy, a chiral ruthenium-based anticancer warhead, Λ/Δ-[Ru(Ph2phen)2(OH2)2]2+, was conjugated to the RGD-containing Ac-MRGDH-NH2 peptide by direct coordination of the M and H residues to the metal. This design afforded two diastereoisomers of a cyclic metallopeptide, Λ-[1]Cl2 and Δ-[1]Cl2. In the dark, the ruthenium-chelating peptide had a triple action. First, it prevented other biomolecules from coordinating with the metal center. Second, its hydrophilicity made [1]Cl2 amphiphilic so that it self-assembled in culture medium into nanoparticles. Third, it acted as a tumor-targeting motif by strongly binding to the integrin (Kd = 0.061 µM for the binding of Λ-[1]Cl2 to αIIbß3), which resulted in the receptor-mediated uptake of the conjugate in vitro. Phototoxicity studies in two-dimensional (2D) monolayers of A549, U87MG, and PC-3 human cancer cell lines and U87MG three-dimensional (3D) tumor spheroids showed that the two isomers of [1]Cl2 were strongly phototoxic, with photoindexes up to 17. Mechanistic studies indicated that such phototoxicity was due to a combination of photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) effects, resulting from both reactive oxygen species generation and peptide photosubstitution. Finally, in vivo studies in a subcutaneous U87MG glioblastoma mice model showed that [1]Cl2 efficiently accumulated in the tumor 12 h after injection, where green light irradiation generated a stronger tumoricidal effect than a nontargeted analogue ruthenium complex [2]Cl2. Considering the absence of systemic toxicity for the treated mice, these results demonstrate the high potential of light-sensitive integrin-targeted ruthenium-based anticancer compounds for the treatment of brain cancer in vivo.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Complexos de Coordenação , Pró-Fármacos , Rutênio , Animais , Humanos , Camundongos , Rutênio/farmacologia , Rutênio/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Pró-Fármacos/química , Integrinas , Peptídeos Cíclicos , Peptídeos , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Complexos de Coordenação/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química
5.
Pharmaceutics ; 15(6)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37376151

RESUMO

Amphiphilic copolymer self-assembly is a straightforward approach to obtain responsive micelles, nanoparticles, and vesicles that are particularly attractive for biomedicine, i.e., for the delivery of functional molecules. Here, amphiphilic copolymers of hydrophobic polysiloxane methacrylate and hydrophilic oligo (ethylene glycol) methyl ether methacrylate with different lengths of oxyethylenic side chains were synthesized via controlled RAFT radical polymerization and characterized both thermally and in solution. In particular, the thermoresponsive and self-assembling behavior of the water-soluble copolymers in water was investigated via complementary techniques such as light transmittance, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) measurements. All the copolymers synthesized were thermoresponsive, displaying a cloud point temperature (Tcp) strongly dependent on macromolecular parameters such as the length of the oligo(ethylene glycol) side chains and the content of the SiMA counits, as well as the concentration of the copolymer in water, which is consistent with a lower critical solution temperature (LCST)-type behavior. SAXS analysis revealed that the copolymers formed nanostructures in water below Tcp, whose dimension and shape depended on the content of the hydrophobic components in the copolymer. The hydrodynamic diameter (Dh) determined by DLS increased with the amount of SiMA and the associated morphology at higher SiMA contents was found to be pearl-necklace-micelle-like, composed of connected hydrophobic cores. These novel amphiphilic copolymers were able to modulate thermoresponsiveness in water in a wide range of temperatures, including the physiological temperature, as well as the dimension and shape of their nanostructured assemblies, simply by varying their chemical composition and the length of the hydrophilic side chains.

6.
Front Chem ; 11: 1106349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025548

RESUMO

We report the synthesis and characterization of a group of benzoylhydrazones (Ln) derived from 2-carbaldehyde-8-hydroxyquinoline and benzylhydrazides containing distinct para substituents (R = H, Cl, F, CH3, OCH3, OH and NH2, for L1-7, respectively; in L8 isonicotinohydrazide was used instead of benzylhydrazide). Cu(II) complexes were prepared by reaction of each benzoylhydrazone with Cu(II) acetate. All compounds were characterized by elemental analysis and mass spectrometry as well as by FTIR, UV-visible absorption, NMR or electron paramagnetic resonance spectroscopies. Complexes isolated in the solid state (1-8) are either formulated as [Cu(HL)acetate] (with L1 and L4) or as [Cu(Ln)]3 (n = 2, 3, 5, 6, 7 and 8). Single crystal X-ray diffraction studies were done for L5 and [Cu(L5)]3, confirming the trinuclear formulation of several complexes. Proton dissociation constants, lipophilicity and solubility were determined for all free ligands by UV-Vis spectrophotometry in 30% (v/v) DMSO/H2O. Formation constants were determined for [Cu(LH)], [Cu(L)] and [Cu(LH-1)] for L = L1, L5 and L6, and also [Cu(LH-2)] for L = L6, and binding modes are proposed, [Cu(L)] predominating at physiological pH. The redox properties of complexes formed with L1, L5 and L6 are investigated by cyclic voltammetry; the formal redox potentials fall in the range of +377 to +395 mV vs. NHE. The binding of the Cu(II)-complexes to bovine serum albumin was evaluated by fluorescence spectroscopy, showing moderate-to-strong interaction and suggesting formation of a ground state complex. The interaction of L1, L3, L5 and L7, and of the corresponding complexes with calf thymus DNA was evaluated by thermal denaturation. The antiproliferative activity of all compounds was evaluated in malignant melanoma (A-375) and lung (A-549) cancer cells. The complexes show higher activity than the corresponding free ligand, and most complexes are more active than cisplatin. Compounds 1, 3, 5, and 8 were selected for additional studies: while these complexes induce reactive oxygen species and double-strand breaks in both cancer cells, their ability to induce cell-death by apoptosis varies. Within the set of compounds tested, 8 emerges as the most promising one, presenting low IC50 values, and high induction of oxidative stress and DNA damage, which eventually lead to high rates of apoptosis.

7.
Dalton Trans ; 52(3): 598-608, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36562298

RESUMO

Metal compounds form an attractive class of ligands for a variety of nucleic acids. Five metal complexes bearing aminopyridyl-2,2'-bipyridine tetradentate ligands and possessing a quasi-planar geometry were challenged toward different types of nucleic acid molecules including RNA polynucleotides in the duplex or triplex form, an RNA Holliday four-way junction, natural double helix DNA and a DNA G-quadruplex. The binding process was monitored comparatively using different spectroscopic and melting methods. The binding preferences that emerge from our analysis are discussed in relation to the structural features of the metal complexes.


Assuntos
Complexos de Coordenação , Platina , Platina/química , Complexos de Coordenação/química , 2,2'-Dipiridil , Paládio/química , Ouro , Ligantes , DNA/química , RNA
8.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36430540

RESUMO

The interaction between the series of berberine derivatives 1-5 (NAX071, NAX120, NAX075, NAX077 and NAX079) and human telomeric G-quadruplexes (G4), which are able to inhibit the Telomerase enzyme's activity in malignant cells, was investigated. The derivatives bear a pyridine moiety connected by a hydrocarbon linker of varying length (n = 1-5, with n number of aliphatic carbon atoms) to the C13 position of the parent berberine. As for the G4s, both bimolecular 5'-TAGGGTTAGGGT-3' (Tel12) and monomolecular 5'-TAGGGTTAGGGTTAGGGTTAGGG-3' (Tel23) DNA oligonucleotides were considered. Spectrophotometric titrations, melting tests, X-ray diffraction solid state analysis and in silico molecular dynamics (MD) simulations were used to describe the different systems. The results were compared in search of structure-activity relationships. The analysis pointed out the formation of 1:1 complexes between Tel12 and all ligands, whereas both 1:1 and 2:1 ligand/G4 stoichiometries were found for the adduct formed by NAX071 (n = 1). Tel12, with tetrads free from the hindrance by the loop, showed a higher affinity. The details of the different binding geometries were discussed, highlighting the importance of H-bonds given by the berberine benzodioxole group and a correlation between the strength of binding and the hydrocarbon linker length. Theoretical (MD) and experimental (X-ray) structural studies evidence the possibility for the berberine core to interact with one or both G4 strands, depending on the constraints given by the linker length, thus affecting the G4 stabilization effect.


Assuntos
Berberina , Quadruplex G , Humanos , Análise Espectral , Telômero , Espectrofotometria
9.
Molecules ; 27(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35807410

RESUMO

G-quadruplexes (G4) are now extensively recognised as a peculiar non-canonical DNA geometry that plays a prime importance role in processes of biological relevance whose number is increasing continuously. The same is true for the less-studied RNA G4 counterpart. G4s are stable structures; however, their geometrical parameters may be finely tuned not only by the presence of particular sequences of nucleotides but also by the salt content of the medium or by a small molecule that may act as a peculiar topology inducer. As far as the interest in G4s increases and our knowledge of these species deepens, researchers do not only verify the G4s binding by small molecules and the subsequent G4 stabilisation. The most innovative studies now aim to elucidate the mechanistic details of the interaction and the ability of a target species (drug) to bind only to a peculiar G4 geometry. In this focused review, we survey the advances in the studies of the binding of small molecules of medical interest to G4s, with particular attention to the ability of these species to bind differently (intercalation, lateral binding or sitting atop) to different G4 topologies (parallel, anti-parallel or hybrid structures). Some species, given the very high affinity with some peculiar G4 topology, can first bind to a less favourable geometry and then induce its conversion. This aspect is also considered.


Assuntos
Quadruplex G , DNA/química , Ligantes
10.
Biomolecules ; 12(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35327600

RESUMO

Metals and metal-based compounds have many implications in biological systems. They are involved in cellular functions, employed in the formation of metal-based drugs and present as pollutants in aqueous systems, with toxic effects for living organisms. Amphiphilic molecules also play important roles in the above bio-related fields as models of membranes, nanocarriers for drug delivery and bioremediating agents. Despite the interest in complex systems involving both metal species and surfactant aggregates, there is still insufficient knowledge regarding the quantitative aspects at the basis of their binding interactions, which are crucial for extensive comprehension of their behavior in solution. Only a few papers have reported quantitative analyses of the thermodynamic, kinetic, speciation and binding features of metal-based compounds and amphiphilic aggregates, and no literature review has yet addressed the quantitative study of these complexes. Here, we summarize and critically discuss the recent contributions to the quantitative investigation of the interactions of metal-based systems with assemblies made of amphiphilic molecules by calorimetric, spectrophotometric and computational techniques, emphasizing the unique picture and parameters that such an analytical approach may provide, to support a deep understanding and beneficial use of these systems for several applications.


Assuntos
Complexos de Coordenação , Calorimetria/métodos , Cinética , Metais/química , Termodinâmica
11.
Organometallics ; 40(15): 2516-2528, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34475610

RESUMO

A series of bioactive molecules were synthesized from the condensation of aspirin or chlorambucil with terminal alkynes bearing alcohol or amine substituents. Insertion of the resulting alkynes into the iron-carbyne bond of readily accessible diiron bis(cyclopentadienyl) µ-aminocarbyne complexes, [1a,b]CF3SO3, afforded novel diiron complexes with a bridging vinyliminium ligand, [2-10]CF3SO3, functionalized with a bioactive moiety. All compounds were characterized by elemental analysis and IR and multinuclear NMR spectroscopy and in three cases by single-crystal X-ray diffraction. Moreover, the D2O solubility, stability in D2O and cell culture media, and octanol-water partition coefficients of diiron complexes were determined spectroscopically. The cytotoxicity of the complexes was assessed in the tumorigenic A2780 and A2780cisR and the nontumorigenic HEK 293T cell lines. Some complexes exhibit high potency and the ability to overcome resistance in A2780cisR cells (aspirin complexes) or high selectivity relative to HEK 293T cells (chlorambucil complexes). Further studies indicate that the complexes significantly trigger intracellular ROS production, irrespective of the nature of the bioactive fragment. DNA alkylation and protein binding studies were also undertaken.

12.
Chem Biol Interact ; 344: 109522, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34029541

RESUMO

Several complexes of general formula [Ru(halide)(η6-p-cymene)(α-diimine)]+, in the form of nitrate, triflate and hexafluorophosphate salts, including a newly synthesized iodide compound, were investigated as potential anticancer drugs and bactericides. NMR and UV-Vis studies evidenced remarkable stability of the complexes in water and cell culture medium. In general, the complexes displayed strong cytotoxicity against A2780 and A549 cancer cell lines with IC50 values in the low micromolar range, and one complex (RUCYN) emerged as the most promising one, with a significant selectivity compared to the non-cancerous HEK293 cell line. A variable affinity of the complexes for BSA and DNA binding was ascertained by spectrophotometry/fluorimetry, circular dichroism, electrophoresis and viscometry. The performance of RUCYN appears associated to enhanced cell internalization, favored by two cyclohexyl substituents, rather than to specific interaction with the evaluated biomolecules. The chloride/iodide replacement, in one case, led to increased cellular uptake and cytotoxicity at the expense of selectivity, and tuned DNA binding towards intercalation. Complexes with iodide or a valproate bioactive fragment exhibited the best antimicrobial profiles.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Bactérias/efeitos dos fármacos , Bovinos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , DNA/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Humanos , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/metabolismo , Substâncias Intercalantes/farmacologia , Ligantes , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ligação Proteica , Rutênio/química , Soroalbumina Bovina/metabolismo , Solubilidade
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 260: 119914, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34015745

RESUMO

We present here a combined spectroscopic and theoretical analysis of the binding of N,N'-bis(2-(1-piperazino)ethyl)-3,4,9,10-perylenetetracarboxylic acid diimide dichloride (PZPERY) to different biosubstrates. Absorbance titrations and circular dichroism experiments, melting studies and isothermal calorimetry (ITC) titrations reveal a picture where the binding to natural double-stranded DNA is very different from that to double and triple-stranded RNAs (poly(A)∙poly(U) and poly(U)∙poly(A)⁎poly(U)). As confirmed also by the structural and energetic details clarified by density functional theory (DFT) calculations, intercalation occurs for DNA, with a process driven by the combination of aggregates disruption and monomers intercalation. Oppositely, for RNAs, no intercalation but groove binding with the formation of supramolecular aggregates is observed. Among all the tested biosubstrates, the affinity of PZPERY towards DNA G-quadruplexes (G4) is the greatest one with a preference for human telomeric G4s. Focusing on hybrid G4 forms, either sitting-atop ("tetrad-parallel") or lateral ("groove-parallel") binding modes were considered in the discussion of the experimental results and molecular dynamics (MD) simulations. Both turned out to be possible concurrently, in agreement also with the experimental binding stoichiometries higher than 2:1.


Assuntos
Quadruplex G , Perileno , Dicroísmo Circular , DNA , Humanos , Polinucleotídeos , RNA , Água
14.
Molecules ; 26(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921819

RESUMO

In this work, we have analysed the binding of the Pt(II) complexes ([PtCl(4'-phenyl-2,2':6',2″-terpyridine)](CF3SO3) (1), [PtI(4'-phenyl-2,2':6',2″-terpyridine)](CF3SO3) (2) and [PtCl(1,3-di(2-pyridyl)benzene) (3)] with selected model proteins (hen egg-white lysozyme, HEWL, and ribonuclease A, RNase A). Platinum coordination compounds are intensively studied to develop improved anticancer agents. In this regard, a critical issue is the possible role of Pt-protein interactions in their mechanisms of action. Multiple techniques such as differential scanning calorimetry (DSC), electrospray ionization mass spectrometry (ESI-MS) and UV-Vis absorbance titrations were used to enlighten the details of the binding to the different biosubstrates. On the one hand, it may be concluded that the affinity of 3 for the proteins is low. On the other hand, 1 and 2 strongly bind them, but with major binding mode differences when switching from HEWL to RNase A. Both 1 and 2 bind to HEWL with a non-specific (DSC) and non-covalent (ESI-MS) binding mode, dominated by a 1:1 binding stoichiometry (UV-Vis). ESI-MS data indicate a protein-driven chloride loss that does not convert into a covalent bond, likely due to the unfavourable complexes' geometries and steric hindrance. This result, together with the significant changes of the absorbance profiles of the complex upon interaction, suggest an electrostatic binding mode supported by some stacking interaction of the aromatic ligand. Very differently, in the case of RNase A, slow formation of covalent adducts occurs (DSC, ESI-MS). The reactivity is higher for the iodo-compound 2, in agreement with iodine lability higher than chlorine.


Assuntos
Antineoplásicos/química , Compostos Organoplatínicos/química , Proteínas/química , Termodinâmica , Espectrometria de Massas por Ionização por Electrospray
15.
Artigo em Inglês | MEDLINE | ID: mdl-33801256

RESUMO

The study of the interaction of persistent organic pollutants with biosubstrates helps to unravel the pathways for toxicity, however, few mechanistic data are present in the literature for these systems. We analyzed the binding of paraquat (PQ) and diquat (DQ) herbicides to natural calf thymus DNA and a DNA G-quadruplex by spectrophotometric titrations, ethidium bromide exchange tests, viscometry, and melting experiments. The interaction with bovine serum albumin (BSA) protein was studied spectrofluorimetrically at different temperatures. The retention of the targets on positive, negative, and neutral micellar aggregates and liposomes was analyzed by ultrafiltration experiments. Despite some favorable features, PQ and DQ only externally bind natural DNA and do not interact with DNA oligonucleotides. Both herbicides bind bovine serum albumin (BSA). PQ binds BSA mainly according to an electrostatics-driven process. However, ultrafiltration data also show that some hydrophobic contribution participates in the features of these systems. The practical problems related to unfavorable spectroscopic signals and inner filter effects are also discussed. Overall, both herbicides show a low affinity for nucleic acids and weak penetration into liposomes; in addition, the equilibrium constants values found for BSA system suggest optimal conditions for transport in the body.


Assuntos
Diquat , Herbicidas , Animais , Bovinos , Herbicidas/análise , Paraquat , Ligação Proteica , Soroalbumina Bovina , Análise Espectral
16.
J Inorg Biochem ; 217: 111355, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33596529

RESUMO

Metal complexes of N-heterocyclic carbene (NHC) ligands are the object of increasing attention for therapeutic purposes. Among the different metal centres, interest on Au-based compounds started with the application as anti-arthritis drugs. On the other hand, Ag(I) antimicrobial properties have been known for a long time. For Au(I)/Au(III)-NHC and Ag(I)-NHC anti-tumour and anti-proliferative properties have been quite recently demonstrated. In addition to these and as for Group 11, copper is a much less investigated metal centre, but a few papers underline its pharmacological potential. This review wants to focus on the different biological targets for these metal-based compounds. It is divided into chapters which are respectively devoted on: i) mitochondria and thiol oxidoreductase systems; ii) other relevant enzymes; iii) nucleic acids. Examples of representative coinage NHCs for each of the targets are provided together with significant references on recent advances on the topic. Moreover, a final comment summarises the aspects enlightened by each chapter and provides some hints to better understand the metal-NHCs mechanistic behaviour based on structure-activity relationships.


Assuntos
Antineoplásicos/uso terapêutico , Complexos de Coordenação/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Metais Pesados/química , Estrutura Molecular , Relação Estrutura-Atividade , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico
17.
J Inorg Biochem ; 216: 111305, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33261935

RESUMO

Protein binding heavily modulates drug activity. Therefore, the binding features need to be elucidated when chemistry researchers study new molecules (metal complexes) to be used as drugs. This paper concerns the experimental and data treatment aspects of the mechanistic analysis of the binding to a fluorescent protein (the golden standard serum albumin) by using direct fluorescence titrations. Fluorescence data are not rarely only qualitatively used, neglecting further treatments which could offer a precious detailed picture of the behavior of the drug. We aim to spread a mechanistic approach, discussing the critical aspects for correctly designing the experiments and treating the data. The researcher may confirm adduct formation and evaluate binding constants (Stern-Volmer KSV or other types of K). Also, we discuss here, with the help of literature examples, the correct use of temperature dependence of K to extract thermodynamic parameters, comment on enthalpy-entropy compensation, together with the use of synchronous spectra and exchange experiments to gain information on the binding type and site. We think that this tutorial/critical synopsis can be of help for the increasing community dealing with these experiments, which are valuable but often much more tricky than it might appear at first sight.


Assuntos
Albumina Sérica Humana/química , Termodinâmica , Animais , Humanos , Espectrometria de Fluorescência
18.
Molecules ; 25(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233711

RESUMO

Gold and silver N-heterocyclic carbenes (NHCs) are emerging for therapeutic applications. Multiple techniques are here used to unveil the mechanistic details of the binding to different biosubstrates of bis(1-(anthracen-9-ylmethyl)-3-ethylimidazol-2-ylidene) silver chloride [Ag(EIA)2]Cl and bis(1-(anthracen-9-ylmethyl)-3-ethylimidazol-2-ylidene) gold chloride [Au(EIA)2]Cl. As the biosubstrates, we tested natural double-stranded DNA, synthetic RNA polynucleotides (single-poly(A), double-poly(A)poly(U) and triple-stranded poly(A)2poly(U)), DNA G-quadruplex structures (G4s), and bovine serum albumin (BSA) protein. Absorbance and fluorescence titrations, mass spectrometry together with melting and viscometry tests show significant differences in the binding features between silver and gold compounds. [Au(EIA)2]Cl covalently binds BSA. It is here evidenced that the selectivity is high: low affinity and external binding for all polynucleotides and G4s are found. Conversely, in the case of [Ag(EIA)2]Cl, the binding to BSA is weak and relies on electrostatic interactions. [Ag(EIA)2]Cl strongly/selectively interacts only with double strands by a mechanism where intercalation plays the major role, but groove binding is also operative. The absence of an interaction with triplexes indicates the major role played by the geometrical constraints to drive the binding mode.


Assuntos
Ouro/química , Compostos Heterocíclicos/química , Metano/análogos & derivados , Prata/química , Algoritmos , DNA/química , Substâncias Macromoleculares/química , Metano/química , Modelos Teóricos , Estrutura Molecular , Desnaturação de Ácido Nucleico , RNA/química , Soroalbumina Bovina/química , Análise Espectral , Relação Estrutura-Atividade , Termodinâmica
19.
J Inorg Biochem ; 212: 111199, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32919247

RESUMO

This work concerns an analysis of the binding mechanism of a copper phthalocyanine (Alcian Blue-tetrakis(methylpyridinium) chloride, ABTP) to natural calf thymus DNA, G-quadruplexes (G4) and synthetic RNA polynucleotides in the form of double polyriboadenylic·polyribouridylic acid (poly(A)·poly(U)) or triple strands polyriboadenylic·2polyribouridylic acid (poly(A)·2poly(U)). ABTP is a well know dye that might undergo novel applications, but its interaction with DNA is scarcely studied and we lack information on possible RNA or G4 binding. This might be related to system complexity due to the presence of supramolecular dye-dye aggregates. Despite this, we show here that apparent parameters can be calculated, which provide information on the binding mechanism. Absorbance titrations in the presence of biosubstrate excess, melting and circular dichroism experiments show that ABTP binds to both RNAs and DNA. External/groove binding is the main feature for RNAs, whereas partial intercalation is the major binging mode for DNA. ABTP externally binds to both hybrid, parallel and anti-parallel G4s but seem to show a slightly different binding mode and a preference for anti-parallel structures. The thermodynamic features of the different systems are also discussed in the frame of the enthalpy-entropy compensation phenomenon.


Assuntos
Azul Alciano/farmacologia , DNA/efeitos dos fármacos , Quadruplex G/efeitos dos fármacos , Piridinas/química , RNA/efeitos dos fármacos , Azul Alciano/química , Sítios de Ligação , Dicroísmo Circular , Espectrofotometria Ultravioleta/métodos , Especificidade por Substrato , Termodinâmica
20.
Dalton Trans ; 49(38): 13372-13385, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-32955070

RESUMO

Based on the ability of terpyridines to react with G-quadruplex DNA (G4) structures along with the interest aroused by Zn as an essential metal centre in many biological processes, we have synthesized and characterized six Zn chloride or nitrate complexes containing terpyridine ligands with different 4'-substituents. In addition, we have studied their interaction with G4 and their cytotoxicity. Our experimental results revealed that the leaving group exerts a strong influence on the cytotoxicity, since the complexes bearing chloride were more cytotoxic than their nitrate analogues and an effect of the terpyridine ligand was also observed. The thermal stabilization profiles showed that the greatest stabilization of hybrid G4, Tel22, was observed for the Zn complexes bearing the terpyridine ligand that contained one or two methylated 4-(imidazol-1-yl)phenyl substituents, 3Cl and 3(L)2, respectively, probably due to their extra positive charge. Stability and aquation studies for these complexes were carried out and no ligand release was detected. Complexes 3Cl and 3(L)2 were successfully internalized by SW480 cells and they seemed to be localized mainly in the nucleolus. The highest cytotoxicity, G4 selectivity and G4 affinity determined by fluorescence and ITC experiments, and subcellular localization quantified by ICP-MS measurements, rendered 3Cl a very interesting complex from a biological standpoint.


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Quadruplex G/efeitos dos fármacos , Piridinas/química , Zinco/química , Linhagem Celular Tumoral , Humanos , Ligantes , Relação Estrutura-Atividade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA