Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 394: 122477, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32240897

RESUMO

Semiconductor quantum dots (QDs) are nanocrystals used in diverse optoelectronics. At the end of their useful life they are likely to end up in landfills, where they could be mobilzed by infiltrating rain water. In this work, spectroscopic and light scattering techniques were employed to investigate the environmental fate of QDs exposed to leachates from Austrian landfill sites containing municipal solid and bulky wastes. Brij-58-coated CdSe QDs, a model for surfactant stabilized hydrophobic nanoparticles, primarily sedimented before being degraded on a slower timescale in the course of 6 months. In contrast, N-acetyl-l-cystein-coated CdTe QDs, which represent electrostatically stabilized nanoparticles with a small covalently linked stabilizing molecule, mainly underwent a degradation mechanism that was accelerated by temperature. 71-95 % of this QD type was still dispersed in all leachates after 6 months at low temperature. Leachate temperature and composition, such as the DOC, as well as the used particle coating determined the mechanistic route of clearance of sedimentation versus degradation. Our study shows, that mechanistic investigations are necessary to determine the persistence of nanoparticles depending on their coatings in waste matrices which can be further used to assess hazardous risks of such nanowastes.

2.
Materials (Basel) ; 10(11)2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-29137172

RESUMO

We present a potential theranostic delivery platform based on the amphiphilic diblock copolymer polybutadiene-block-poly (ethylene oxide) combining covalent fluorescent labeling and membrane incorporation of superparamagnetic iron oxide nanoparticles for multimodal imaging. A simple self-assembly and labeling approach to create the fluorescent and magnetic vesicles is described. Cell uptake of the densely PEGylated polymer vesicles could be altered by surface modifications that vary surface charge and accessibility of the membrane active species. Cell uptake and cytotoxicity were evaluated by confocal microscopy, transmission electron microscopy, iron content and metabolic assays, utilizing multimodal tracking of membrane fluorophores and nanoparticles. Cationic functionalization of vesicles promoted endocytotic uptake. In particular, incorporation of cationic lipids in the polymersome membrane yielded tremendously increased uptake of polymersomes and magnetopolymersomes without increase in cytotoxicity. Ultrastructure investigations showed that cationic magnetopolymersomes disintegrated upon hydrolysis, including the dissolution of incorporated iron oxide nanoparticles. The presented platform could find future use in theranostic multimodal imaging in vivo and magnetically triggered delivery by incorporation of thermorepsonsive amphiphiles that can break the membrane integrity upon magnetic heating via the embedded superparamagnetic nanoparticles.

4.
Environ Pollut ; 214: 795-805, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27155097

RESUMO

The number of products containing engineered nanomaterials (ENMs) has increased due to their high industrial relevance as well as their use in diverse consumer products. At the end of their life cycle ENMs might be released to the environment and therefore concerns arise regarding their environmental impact. In order to track their fate upon disposal, it is crucial to establish methods to trace ENMs in complex environmental samples and to differentiate them from naturally-occurring nanoparticles. The goal of this study was to distinctively trace ENMs by (non-invasive) detection methods. For this, fluorescent ENMs, namely quantum dots (QDs), were distinctively traced in complex aqueous matrices, and were still detectable after a period of two months using fluorescence spectroscopy. In particular, two water-dispersible QD-species, namely CdTe/CdS QDs with N-acetyl-l-cysteine as capping agent (NAC-QDs) and surfactant-stabilized CdSe/ZnS QDs (Brij(®)58-QDs), were synthesized to examine their environmental fate during disposal as well as their potential interaction with naturally-occurring substances present in landfill leachates. When QDs were spiked into a leachate from an old landfill site, alteration processes, such as sorption, aggregation, agglomeration, and interactions with dissolved organic carbon (DOC), led to modifications of the optical properties of QDs. The spectral signatures of NAC-QDs deteriorated depending on residence time and storage temperature, while Brij(®)58-QDs retained their photoluminescence fingerprints, indicating their high colloidal stability. The observed change in photoluminescence intensity was mainly caused by DOC-interaction and association with complexing agents, such as fulvic or humic acids, typically present in mature landfill leachates. For both QD-species, the results also indicated that pH of the leachate had no significant impact on their optical properties. As a result, the unique spectroscopic fingerprints of QDs, specifically surfactant-stabilized QDs, allowed distinctive tracing in complex aqueous waste matrices in order to study their long-term behavior and ultimate fate.


Assuntos
Misturas Complexas/análise , Monitoramento Ambiental/métodos , Corantes Fluorescentes/análise , Pontos Quânticos/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Substâncias Húmicas/análise , Modelos Teóricos , Espectrometria de Fluorescência , Tensoativos/química
5.
Langmuir ; 32(17): 4259-69, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27046133

RESUMO

Fundamental research on nanoparticle (NP) interactions and development of next-generation biomedical NP applications relies on synthesis of monodisperse, functional, core-shell nanoparticles free of residual dispersants with truly homogeneous and controlled physical properties. Still, synthesis and purification of e.g. such superparamagnetic iron oxide NPs remain a challenge. Comparing the success of different methods is marred by the sensitivity of analysis methods to the purity of the product. We synthesize monodisperse, oleic acid (OA)-capped, Fe3O4 NPs in the superparamagnetic size range (3-10 nm). Ligand exchange of OA for poly(ethylene glycol) (PEG) was performed with the PEG irreversibly grafted to the NP surface by a nitrodopamine (NDA) anchor. Four different methods were investigated to remove excess ligands and residual OA: membrane centrifugation, dialysis, size exclusion chromatography, and precipitation combined with magnetic decantation. Infrared spectroscopy and thermogravimetric analysis were used to determine the purity of samples after each purification step. Importantly, only magnetic decantation yielded pure NPs at high yields with sufficient grafting density for biomedical applications (∼1 NDA-PEG(5 kDa)/nm(2), irrespective of size). The purified NPs withstand challenging tests such as temperature cycling in serum and long-term storage in biological buffers. Dynamic light scattering, transmission electron microscopy, and small-angle X-ray scattering show stability over at least 4 months also in serum. The successful synthesis and purification route is compatible with any conceivable functionalization for biomedical or biomaterial applications of PEGylated Fe3O4 NPs.

6.
J Colloid Interface Sci ; 466: 62-71, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26707773

RESUMO

Magnetic nanoparticle-containing capsules have been proposed for many uses, including triggered drug delivery and imaging. Combining superparamagnetic iron oxide nanoparticles (SPIONs) with existing liposome drug delivery technology is an enticing near-future prospect, but it requires efficient methods of synthesis and formulation compatible with pharmaceutical applications. We report a facile way of producing large, unilamellar, and homogeneously sized magnetoliposomes with high content of monodisperse, hydrophobic SPIONs integrated in the lipid membrane by use of a solvent inversion technique. For low lipid concentrations, unilamellar and monodisperse vesicles were obtained that became increasingly multilamellar with higher lipid fraction. Both, the co-self-assembled structure and loading content were significantly influenced by the purity of the nanoparticle shell. SPIONs with homogeneous shells of nitrodopamine-anchored hydrophobic dispersants could be quantitatively loaded up to 20%w/w, while SPIONs also containing residual physisorbed oleic acid exhibited a loading cut-off around 10%w/w SPIONs accompanied by drastic changes in size distribution. Lipid acyl chain length crucially influenced the formation and resultant stability of the loaded assemblies. The formation of nanoparticle-loaded vesicles is exemplified in different biologically important media, yielding ready-to-use magnetoliposome formulations.


Assuntos
Lipossomos/química , Nanopartículas de Magnetita/química , Magnetossomos/química , Lipídeos de Membrana/química , Cápsulas/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Solventes/química , Propriedades de Superfície
7.
Materials (Basel) ; 9(1)2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-28787829

RESUMO

Magnetic polymersomes were prepared by self-assembly of the amphiphilic block copolymer poly(isoprene-b-N-isopropylacrylamide) with monodisperse hydrophobic superparamagnetic iron oxide nanoparticles (SPION). The specifically designed thermoresponsive block copolymer allowed for efficient incorporation of the hydrophobic nanoparticles in the membrane core and encapsulation of the water soluble dye calcein in the lumen of the vesicles. Magnetic heating of the embedded SPIONs led to increased bilayer permeability through dehydration of the thermoresponsive PNIPAM block. The entrapped calcein could therefore be released in controlled doses solely through exposure to pulses of an alternating magnetic field. This hybrid SPION-polymersome system demonstrates a possible direction for release applications that merges rational polymersome design with addressed external magnetic field-triggered release through embedded nanomaterials.

8.
Langmuir ; 31(33): 9198-204, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26226071

RESUMO

High-temperature synthesized monodisperse superparamagnetic iron oxide nanoparticles are obtained with a strongly bound ligand shell of oleic acid and its decomposition products. Most applications require a stable presentation of a defined surface chemistry; therefore, the native shell has to be completely exchanged for dispersants with irreversible affinity to the nanoparticle surface. We evaluate by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) the limitations of commonly used approaches. A mechanism and multiple exchange scheme that attains the goal of complete and irreversible ligand replacement on monodisperse nanoparticles of various sizes is presented. The obtained hydrophobic nanoparticles are ideally suited for magnetically controlled drug delivery and membrane applications and for the investigation of fundamental interfacial properties of ultrasmall core-shell architectures.


Assuntos
Compostos Férricos/química , Nanopartículas de Magnetita/química , Ácido Oleico/química , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas de Magnetita/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier
9.
J Phys Chem A ; 117(29): 6007-14, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23461650

RESUMO

In J-aggregates of cyanine dyes, closely packed molecules form mesoscopic tubes with nanometer-diameter and micrometer-length. Their efficient energy transfer pathways make them suitable candidates for artificial light harvesting systems. This great potential calls for an in-depth spectroscopic analysis of the underlying energy deactivation network and coherence dynamics. We use two-dimensional electronic spectroscopy with sub-10 fs laser pulses in combination with two-dimensional decay-associated spectra analysis to describe the population flow within the aggregate. Based on the analysis of Fourier-transform amplitude maps, we distinguish between vibrational or vibronic coherence dynamics as the origin of pronounced oscillations in our two-dimensional electronic spectra.


Assuntos
Elétrons , Análise Espectral , Vibração , Carbocianinas/química , Corantes/química , Entropia , Análise de Fourier , Modelos Moleculares , Conformação Molecular , Polímeros/química , Água/química
10.
J Chem Phys ; 136(20): 204503, 2012 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-22667567

RESUMO

The interaction of exciton and charge transfer (CT) states plays a central role in photo-induced CT processes in chemistry, biology, and physics. In this work, we use a combination of two-dimensional electronic spectroscopy (2D-ES), pump-probe measurements, and quantum chemistry to investigate the ultrafast CT dynamics in a lutetium bisphthalocyanine dimer in different oxidation states. It is found that in the anionic form, the combination of strong CT-exciton interaction and electronic asymmetry induced by a counter-ion enables CT between the two macrocycles of the complex on a 30 fs timescale. Following optical excitation, a chain of electron and hole transfer steps gives rise to characteristic cross-peak dynamics in the electronic 2D spectra, and we monitor how the excited state charge density ultimately localizes on the macrocycle closest to the counter-ion within 100 fs. A comparison with the dynamics in the radical species further elucidates how CT states modulate the electronic structure and tune fs-reaction dynamics. Our experiments demonstrate the unique capability of 2D-ES in combination with other methods to decipher ultrafast CT dynamics.


Assuntos
Elétrons , Indóis/química , Lutécio/química , Compostos de Amônio Quaternário/química , Dimerização , Isoindóis , Modelos Moleculares , Análise Espectral/métodos , Fatores de Tempo
11.
J Phys Chem Lett ; 3(11): 1497-502, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-26285628

RESUMO

In this work, we examine vibrational coherence in a molecular monomer, where time evolution of a nuclear wavepacket gives rise to oscillating diagonal- and off-diagonal peaks in two-dimensional electronic spectra. We find that the peaks oscillate out-of-phase, resulting in a cancellation in the corresponding pump-probe spectra. Our results confirm the unique disposition of two-dimensional electronic spectroscopy (2D-ES) for the study of coherences. The oscillation pattern is in excellent agreement with the diagrammatic analysis of the third-order nonlinear response. We show how 2D-ES can be used to distinguish between ground- and excited-state wavepackets. On the basis of our results, we discuss coherences in coupled molecular aggregates involving both electronic and nuclear degrees of freedom. We conclude that a general distinguishing criterion based on the experimental data alone cannot be devised.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA