RESUMO
Laboratory benchmarking allows objective analysis of the analytical performance of malaria rapid diagnostic tests (RDTs). We present the analytical detection limits of the Rapigen BIOCREDIT Malaria Ag Pf/Pv (pLDH/pLDH), the Rapigen BIOCREDIT Malaria Ag Pf (pLDH/HRPII), and two best-in-class WHO-prequalified comparator RDTs, generated using standardized panels containing recombinant antigen, in vitro cultured parasites, international standards, and clinical samples. Detection limit antigen concentrations of HRP2, PfLDH, and PvLDH were determined for the Rapigen and comparator RDTs. Detection of antigens in international units (IU)/mL was also evaluated. The Rapigen Ag Pf (pLDH/HRPII) detected 3.9 and 3.9 IU/mL for PfLDH and HRP2, respectively, and the Ag Pf/Pv (pLDH/pLDH) detected 3.9 and 5.0 IU/mL for PfLDH and PvLDH, respectively. The comparator HRP2/PfLDH and HRP2/PvLDH detected 15.6 and 31.3 IU/mL for HRP2 and PfLDH and 15.6 and 50.0 IU/mL for HRP2 and PvLDH, respectively. The RDT clinical sensitivity was predicted through application of analytical detection limits to antigen concentration distributions from clinical symptomatic and asymptomatic cases. Febrile cases would be detected in a majority by both standard and Rapigen RDTs, but incremental increases in sensitivity in the Rapigen RDTs may be important for clinical cases currently missed by microscopy. Rapigen RDTs were predicted to have improved detection of asymptomatic cases and infections with parasites carrying hrp2 deletions through more sensitive PfLDH detection. Through the benchmarking and simulation of clinical sensitivity, a method for rapidly assessing the ability of new RDTs to meet clinical needs using high-sensitivity antigen distribution data is presented.
Assuntos
Antígenos de Protozoários , Testes Diagnósticos de Rotina , Malária Falciparum , Plasmodium falciparum , Sensibilidade e Especificidade , Humanos , Antígenos de Protozoários/sangue , Antígenos de Protozoários/imunologia , Testes Diagnósticos de Rotina/métodos , Plasmodium falciparum/imunologia , Malária Falciparum/diagnóstico , Proteínas de Protozoários/sangue , Proteínas de Protozoários/imunologia , Malária/diagnóstico , Kit de Reagentes para Diagnóstico/normas , Limite de Detecção , Testes de Diagnóstico RápidoRESUMO
The relationship between N-antigen concentration and viral load within and across different specimens guides the clinical performance of rapid diagnostic tests (RDT) in different uses. A prospective study was conducted in Porto Velho, Brazil, to investigate RDT performance in different specimen types as a function of the correlation between antigen concentration and viral load. The study included 214 close contacts with recent exposures to confirmed cases, aged 12 years and older and with various levels of vaccination. Antigen concentration was measured in nasopharyngeal swab (NPS), anterior nares swab (ANS), and saliva specimens. Reverse transcriptase (RT)-PCR was conducted on the NPS and saliva specimens, and two RDTs were conducted on ANS and one RDT on saliva. Antigen concentration correlated well with viral load when measured in the same specimen type but not across specimen types. Antigen levels were higher in symptomatic cases compared to asymptomatic/oligosymptomatic cases and lower in saliva compared to NPS and ANS samples. Discordant results between the RDTs conducted on ANS and the RT-PCR on NPS were resolved by antigen concentration values. The analytical limit-of-detection of RDTs can be used to predict the performance of the tests in populations for which the antigen concentration is known. The antigen dynamics across different sample types observed in SARS-CoV-2 disease progression support use of RDTs with nasal samples. Given lower antigen concentrations in saliva, rapid testing using saliva is expected to require improved RDT analytical sensitivity to achieve clinical sensitivity similar to rapid testing of nasal samples.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Carga Viral , Estudos Prospectivos , COVID-19/diagnóstico , Testes Sorológicos , Saliva , Manejo de Espécimes , Sensibilidade e Especificidade , NasofaringeRESUMO
BACKGROUND: The introduction of novel short course treatment regimens for the radical cure of Plasmodium vivax requires reliable point-of-care diagnosis that can identify glucose-6-phosphate dehydrogenase (G6PD) deficient individuals. While deficient males can be identified using a qualitative diagnostic test, the genetic make-up of females requires a quantitative measurement. SD Biosensor (Republic of Korea) has developed a handheld quantitative G6PD diagnostic (STANDARD G6PD test), that has approximately 90% accuracy in field studies for identifying individuals with intermediate or severe deficiency. The device can only be considered for routine care if precision of the assay is high. METHODS AND FINDINGS: Commercial lyophilised controls (ACS Analytics, USA) with high, intermediate, and low G6PD activities were assessed 20 times on 10 Biosensor devices and compared to spectrophotometry (Pointe Scientific, USA). Each device was then dispatched to one of 10 different laboratories with a standard set of the controls. Each control was tested 40 times at each laboratory by a single user and compared to spectrophotometry results. When tested at one site, the mean coefficient of variation (CV) was 0.111, 0.172 and 0.260 for high, intermediate, and low controls across all devices respectively; combined G6PD Biosensor readings correlated well with spectrophotometry (rs = 0.859, p<0.001). When tested in different laboratories, correlation was lower (rs = 0.604, p<0.001) and G6PD activity determined by Biosensor for the low and intermediate controls overlapped. The use of lyophilised human blood samples rather than fresh blood may have affected these findings. Biosensor G6PD readings between sites did not differ significantly (p = 0.436), whereas spectrophotometry readings differed markedly between sites (p<0.001). CONCLUSIONS: Repeatability and inter-laboratory reproducibility of the Biosensor were good; though the device did not reliably discriminate between intermediate and low G6PD activities of the lyophilized specimens. Clinical studies are now required to assess the devices performance in practice.
Assuntos
Técnicas Biossensoriais/normas , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Glucosefosfato Desidrogenase/sangue , Feminino , Liofilização , Deficiência de Glucosefosfato Desidrogenase/sangue , Humanos , Testes Imediatos/normas , Reprodutibilidade dos Testes , EspectrofotometriaRESUMO
Certain clinical indications and treatments such as the use of rasburicase in cancer therapy and 8-aminoquinolines for Plasmodium vivax malaria treatment would benefit from a point-of-care test for glucose-6-phosphate dehydrogenase (G6PD) deficiency. Three studies were conducted to evaluate the performance of one such test: the STANDARD™ G6PD Test (SD BIOSENSOR, South Korea). First, biological interference on the test performance was evaluated in specimens with common blood disorders, including high white blood cell (WBC) counts. Second, the test precision on fingerstick specimens was evaluated against five individuals of each, deficient, intermediate, and normal G6PD activity status. Third, clinical performance of the test was evaluated at three point-of-care settings in the United States. The test performed equivalently to the reference assay in specimens with common blood disorders. High WBC count blood samples resulted in overestimation of G6PD activity in both the reference assay and the STANDARD G6PD Test. The STANDARD G6PD Test showed good precision on multiple fingerstick specimens from the same individual. The same G6PD threshold values (U/g Hb) were applied for a semiquantitative interpretation for fingerstick- and venous-derived results. The sensitivity/specificity values (95% confidence intervals) for the test for G6PD deficiency were 100 (92.3-100.0)/97 (95.2-98.2) and 100 (95.7-100.0)/97.4 (95.7-98.5) for venous and capillary specimens, respectively. The same values for females with intermediate (> 30% to ≤ 70%) G6PD activity were 94.1 (71.3-99.9)/88.2 (83.9-91.7) and 82.4 (56.6-96.2)/87.6(83.3-91.2) for venous and capillary specimens, respectively. The STANDARD G6PD Test enables point-of-care testing for G6PD deficiency.