Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Natl Sci Rev ; 10(12): nwad227, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38152479

RESUMO

N6-methyladenosine (m6A) is a critical regulator in the fate of RNA, but whether and how m6A executes its functions in different tissues remains largely obscure. Here we report downregulation of a crucial m6A reader, YTHDF2, leading to tissue-specific programmed cell deaths (PCDs) upon fluorene-9-bisphenol (BHPF) exposure. Currently, Bisphenol A (BPA) substitutes are widely used in plastic manufacturing. Interrogating eight common BPA substitutes, we detected BHPF in 14% serum samples of pregnant participants. In a zebrafish model, BHPF caused tissue-specific PCDs triggering cardiac and vascular defects. Mechanistically, BHPF-mediated downregulation of YTHDF2 reduced YTHDF2-facilitated translation of m6A-gch1 for cardiomyocyte ferroptosis, and decreased YTHDF2-mediated m6A-sting1 decay for caudal vein plexus (CVP) apoptosis. The two distinct YTHDF2-mediated m6A regulations and context-dependent co-expression patterns of gch1/ythdf2 and tnfrsf1a/ythdf2 contributed to YTHDF2-mediated tissue-specific PCDs, uncovering a new layer of PCD regulation. Since BHPF/YTHDF2-medaited PCD defects were also observed in mammals, BHPF exposure represents a potential health threat.

2.
EMBO Rep ; 24(8): e56297, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37306041

RESUMO

Precise regulation of mitochondrial fusion and fission is essential for cellular activity and animal development. Imbalances between these processes can lead to fragmentation and loss of normal membrane potential in individual mitochondria. In this study, we show that MIRO-1 is stochastically elevated in individual fragmented mitochondria and is required for maintaining mitochondrial membrane potential. We further observe a higher level of membrane potential in fragmented mitochondria in fzo-1 mutants and wounded animals. Moreover, MIRO-1 interacts with VDAC-1, a crucial mitochondrial ion channel located in the outer mitochondrial membrane, and this interaction depends on the residues E473 of MIRO-1 and K163 of VDAC-1. The E473G point mutation disrupts their interaction, resulting in a reduction of the mitochondrial membrane potential. Our findings suggest that MIRO-1 regulates membrane potential and maintains mitochondrial activity and animal health by interacting with VDAC-1. This study provides insight into the mechanisms underlying the stochastic maintenance of membrane potential in fragmented mitochondria.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo
3.
Cell Regen ; 11(1): 38, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36451031

RESUMO

Mitochondria are organelles that serve numerous critical cellular functions, including energy production, Ca2+ homeostasis, redox signaling, and metabolism. These functions are intimately linked to mitochondrial morphology, which is highly dynamic and capable of rapid and transient changes to alter cellular functions in response to environmental cues and cellular demands. Mitochondrial morphology and activity are critical for various physiological processes, including wound healing. In mammals, wound healing is a complex process that requires coordinated function of multiple cell types and progresses in partially overlapping but distinct stages: hemostasis and inflammation, cell proliferation and migration, and tissue remodeling. The repair process at the single-cell level forms the basis for wound healing and regeneration in tissues. Recent findings reveal that mitochondria fulfill the intensive energy demand for wound repair and aid wound closure by cytoskeleton remodeling via morphological changes and mitochondrial reactive oxygen species (mtROS) signaling. In this review, we will mainly elucidate how wounding induces changes in mitochondrial morphology and activity and how these changes, in turn, contribute to cellular wound response and repair.

4.
Cell Rep ; 41(4): 111546, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288717

RESUMO

Human papillomavirus (HPV)-induced carcinogenesis critically depends on the viral early protein 7 (E7), making E7 an attractive therapeutic target. Here, we report that the E7 messenger RNA (mRNA)-containing oncotranscript complex can be selectively targeted by heat treatment. In HPV-infected cells, viral E7 mRNA is modified by N6-methyladenosine (m6A) and stabilized by IGF2BP1, a cellular m6A reader. Heat treatment downregulates E7 mRNA and protein by destabilizing IGF2BP1 without the involvement of canonical heat-shock proteins and reverses HPV-associated carcinogenesis in vitro and in vivo. Mechanistically, heat treatment promotes IGF2BP1 aggregation only in the presence of m6A-modified E7 mRNA to form distinct heat-induced m6A E7 mRNA-IGF2BP1 granules, which are resolved by the ubiquitin-proteasome system. Collectively, our results not only show a mutual regulation between m6A RNA and its reader but also provide a heat-treatment-based therapeutic strategy for HPV-associated malignancies by specifically downregulating E7 mRNA-IGF2BP1 oncogenic complex.


Assuntos
Alphapapillomavirus , Infecções por Papillomavirus , Humanos , Alphapapillomavirus/metabolismo , Carcinogênese , Proteínas de Choque Térmico , Resposta ao Choque Térmico , Papillomaviridae , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Complexo de Endopeptidases do Proteassoma , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , Ubiquitina , Proteínas de Ligação a RNA
5.
Research (Wash D C) ; 2022: 9802969, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321260

RESUMO

Despite extensive efforts, COVID-19 pandemic caused by the SARS-CoV-2 virus is still at large. Vaccination is an effective approach to curb virus spread, but several variants (e.g., delta, delta plus, omicron, and IHU) appear to weaken or possibly escape immune protection. Thus, novel and quickly scalable approaches to restrain SARS-CoV-2 are urgently needed. Multiple evidences showed thermal sensitivity of SARS-CoV-2 and negative correlation between environmental temperature and COVID-19 transmission with unknown mechanism. Here, we reveal a potential mechanism by which mild heat treatment destabilizes the wild-type RNA-dependent RNA polymerase (also known as nonstructural protein 12 (NSP12)) of SARS-CoV-2 as well as the P323L mutant commonly found in SARS-CoV-2 variants, including omicron and IHU. Mechanistically, heat treatment promotes E3 ubiquitin ligase ZNF598-dependent NSP12 ubiquitination leading to proteasomal degradation and significantly decreases SARS-CoV-2 RNA copy number and viral titer. A mild daily heat treatment maintains low levels of both wild-type and P323L mutant of NSP12, suggesting clinical potential. Collectively, this novel mechanism, heat-induced NSP12 degradation, suggests a prospective heat-based intervention against SARS-CoV-2.

6.
Bioeng Transl Med ; 7(1): e10250, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35111950

RESUMO

Stem cell therapies are unsatisfactory due to poor cell survival and engraftment. Stem cell used for therapy must be properly "tuned" for a harsh in vivo environment. Herein, we report that transfer of exogenous mitochondria (mito) to adipose-derived mesenchymal stem cells (ADSCs) can effectively boost their energy levels, enabling efficient cell engraftment. Importantly, the entire process of exogeneous mitochondrial endocytosis is captured by high-content live-cell imaging. Mitochondrial transfer leads to acutely enhanced bioenergetics, with nearly 17% of higher adenosine 5'-triphosphate (ATP) levels in ADSCs treated with high mitochondrial dosage and further results in altered secretome profiles of ADSCs. Mitochondrial transfer also induced the expression of 334 mRNAs in ADSCs, which are mainly linked to signaling pathways associated with DNA replication and cell division. We hypothesize that increase in ATP and cyclin-dependent kinase 1 and 2 expression might be responsible for promoting enhanced proliferation, migration, and differentiation of ADSCs in vitro. More importantly, mito-transferred ADSCs display prolonged cell survival, engraftment and horizontal transfer of exogenous mitochondria to surrounding cells in a full-thickness skin defect rat model with improved skin repair compared with nontreated ADSCs. These results demonstrate that intracellular mitochondrial transplantation is a promising strategy to engineer stem cells for tissue regeneration.

7.
Blood Cancer Discov ; 2(4): 388-401, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34661159

RESUMO

The PML/RARα fusion protein is the oncogenic driver in acute promyelocytic leukemia (APL). Although most APL cases are cured by PML/RARα-targeting therapy, relapse and resistance can occur due to drug-resistant mutations. Here we report that thermal stress destabilizes the PML/RARα protein, including clinically identified drug-resistant mutants. AML1/ETO and TEL/AML1 oncofusions show similar heat shock susceptibility. Mechanistically, mild hyperthermia stimulates aggregation of PML/RARα in complex with nuclear receptor corepressors leading to ubiquitin-mediated degradation via the SIAH2 E3 ligase. Hyperthermia and arsenic therapy destabilize PML/RARα via distinct mechanisms and are synergistic in primary patient samples and in vivo, including three refractory APL cases. Collectively, our results suggest that by taking advantage of a biophysical vulnerability of PML/RARα, thermal therapy may improve prognosis in drug-resistant or otherwise refractory APL. These findings serve as a paradigm for therapeutic targeting of fusion oncoprotein-associated cancers by hyperthermia. SIGNIFICANCE: Hyperthermia destabilizes oncofusion proteins including PML/RARα and acts synergistically with standard arsenic therapy in relapsed and refractory APL. The results open up the possibility that heat shock sensitivity may be an easily targetable vulnerability of oncofusion-driven cancers.See related commentary by Wu et al., p. 300.


Assuntos
Hipertermia Induzida , Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Proteínas de Fusão Oncogênica/genética , Tretinoína/uso terapêutico
8.
Oncogene ; 40(13): 2339-2354, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664451

RESUMO

Most of the drugs currently prescribed for cancer treatment are riddled with substantial side effects. In order to develop more effective and specific strategies to treat cancer, it is of importance to understand the biology of drug targets, particularly the newly emerging ones. A comprehensive evaluation of these targets will benefit drug development with increased likelihood for success in clinical trials. The folate-mediated one-carbon (1C) metabolism pathway has drawn renewed attention as it is often hyperactivated in cancer and inhibition of this pathway displays promise in developing anticancer treatment with fewer side effects. Here, we systematically review individual enzymes in the 1C pathway and their compartmentalization to mitochondria and cytosol. Based on these insight, we conclude that (1) except the known 1C targets (DHFR, GART, and TYMS), MTHFD2 emerges as good drug target, especially for treating hematopoietic cancers such as CLL, AML, and T-cell lymphoma; (2) SHMT2 and MTHFD1L are potential drug targets; and (3) MTHFD2L and ALDH1L2 should not be considered as drug targets. We highlight MTHFD2 as an excellent therapeutic target and SHMT2 as a complementary target based on structural/biochemical considerations and up-to-date inhibitor development, which underscores the perspectives of their therapeutic potential.


Assuntos
Linfoma de Células T/tratamento farmacológico , Redes e Vias Metabólicas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Carbono/metabolismo , Ácido Fólico/genética , Ácido Fólico/metabolismo , Humanos , Linfoma de Células T/metabolismo , Linfoma de Células T/patologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neoplasias/metabolismo
9.
Sci Rep ; 10(1): 13963, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811891

RESUMO

How organisms maintain cell size homeostasis is a long-standing problem that remains unresolved, especially in multicellular organisms. Recent experiments in diverse animal cell types demonstrate that within a cell population, cellular proliferation is low for small and large cells, but high at intermediate sizes. Here we use mathematical models to explore size-control strategies that drive such a non-monotonic profile resulting in the proliferation capacity being maximized at a target cell size. Our analysis reveals that most models of size control yield proliferation capacities that vary monotonically with cell size, and non-monotonicity requires two key mechanisms: (1) the growth rate decreases with increasing size for excessively large cells; and (2) cell division occurs as per the Adder model (division is triggered upon adding a fixed size from birth), or a Sizer-Adder combination. Consistent with theory, Jurkat T cell growth rates increase with size for small cells, but decrease with size for large cells. In summary, our models show that regulation of both growth and cell-division timing is necessary for size control in animal cells, and this joint mechanism leads to a target cell size where cellular proliferation capacity is maximized.


Assuntos
Proliferação de Células/fisiologia , Homeostase/fisiologia , Animais , Divisão Celular/fisiologia , Crescimento Celular , Tamanho Celular , Biologia Computacional/métodos , Humanos , Mitose , Modelos Biológicos , Modelos Teóricos
10.
Hepatol Int ; 14(4): 463-474, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32578019

RESUMO

Cell division is essential for organismal growth and tissue homeostasis. It is exceptionally significant in tissues chronically exposed to intrinsic and external damage, like the liver. After decades of studying the regulation of cell cycle by extracellular signals, there are still gaps in our knowledge on how these two interact with metabolic pathways in vivo. Studying the cross-talk of these pathways has direct clinical implications as defects in cell division, signaling pathways, and metabolic homeostasis are frequently observed in liver diseases. In this review, we will focus on recent reports which describe various functions of cell cycle regulators in hepatic homeostasis. We will describe the interplay between the cell cycle and metabolism during liver regeneration after acute and chronic damage. We will focus our attention on non-alcoholic fatty liver disease, especially non-alcoholic steatohepatitis. The global incidence of non-alcoholic fatty liver disease is increasing exponentially. Therefore, understanding the interplay between cell cycle regulators and metabolism may lead to the discovery of novel therapeutic targets amenable to intervention.


Assuntos
Ciclo Celular , Homeostase , Hepatopatia Gordurosa não Alcoólica/metabolismo , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia
11.
Biomaterials ; 224: 119492, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31557588

RESUMO

Age-associated musculoskeletal disorders (MSDs) have been historically overlooked by mainstream biopharmaceutical researchers. However, it has now been recognized that stem and progenitor cells confer innate healing capacity for the musculoskeletal system. Current evidence indicates that exosomes are particularly important in this process as they can mediate sequential and reciprocal interactions between cells to initiate and enhance healing. The present review focuses on stem cells (SCs) derived exosomes as a regenerative therapy for treatment of musculoskeletal disorders. We discuss mechanisms involving exosome-mediated transfer of RNAs and how these have been demonstrated in vitro and in vivo to affect signal transduction pathways in target cells. We envision that standardized protocols for stem cell culture as well as for the isolation and characterization of exosomes enable GMP-compliant large-scale production of SCs-derived exosomes. Hence, potential new treatment for age-related degenerative diseases can be seen in the horizon.


Assuntos
Envelhecimento/patologia , Exossomos/metabolismo , MicroRNAs/uso terapêutico , Doenças Musculoesqueléticas/terapia , Células-Tronco/metabolismo , Animais , Humanos , Pesquisa Translacional Biomédica
12.
Biochim Biophys Acta Mol Cell Res ; 1866(3): 409-417, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30315834

RESUMO

Joint regulation of growth rate and cell division rate determines cell size. Here we discuss how animal cells achieve cell size homeostasis potentially involving multiple signaling pathways converging at metabolic regulation of growth rate and cell cycle progression. While several models have been developed to explain cell size control, comparison of the two predominant models shows that size homeostasis is dependent on the ability to adjust cellular growth rate based on cell size. Consequently, maintenance of size homeostasis requires that larger cells can grow slower than small cells in relative terms. We review recent experimental evidence showing that such size adjustment occurs primarily at or immediately before the G1/S transition of the cell cycle. We further propose that bidirectional feedback between growth rate and size results in cell size sensing and discuss potential mechanisms how this may be accomplished.


Assuntos
Divisão Celular/fisiologia , Proliferação de Células/fisiologia , Homeostase/fisiologia , Animais , Ciclo Celular/fisiologia , Tamanho Celular , Células/citologia , Pontos de Checagem da Fase G1 do Ciclo Celular/fisiologia , Crescimento/fisiologia , Humanos , Modelos Biológicos , Transdução de Sinais/fisiologia
13.
Dev Cell ; 47(4): 425-438.e5, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30344111

RESUMO

Liver disease is linked to a decreased capacity of hepatocytes to divide. In addition, cellular metabolism is important for tissue homeostasis and regeneration. Since metabolic changes are a hallmark of liver disease, we investigated the connections between metabolism and cell division. We determined global metabolic changes at different stages of liver regeneration using a combination of integrated transcriptomic and metabolomic analyses with advanced functional redox in vivo imaging. Our data indicate that blocking hepatocyte division during regeneration leads to mitochondrial dysfunction and downregulation of oxidative pathways. This resulted in an increased redox ratio and hyperactivity of alanine transaminase allowing the production of alanine and α-ketoglutarate from pyruvate when mitochondrial functions are impaired. Our data suggests that during liver regeneration, cell division leads to hepatic metabolic remodeling. Moreover, we demonstrate that hepatocytes are equipped with a flexible metabolic machinery able to adapt dynamically to changes during tissue regeneration.


Assuntos
Hepatócitos/metabolismo , Regeneração Hepática/fisiologia , Fígado/metabolismo , Mitocôndrias/metabolismo , Animais , Metabolômica/métodos , Ácido Pirúvico/metabolismo
14.
Elife ; 72018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30247122

RESUMO

Transcription factors achieve specificity by establishing intricate interaction networks that will change depending on the cell context. Capturing these interactions in live condition is however a challenging issue that requires sensitive and non-invasive methods.We present a set of fly lines, called 'multicolor BiFC library', which covers most of the Drosophila transcription factors for performing Bimolecular Fluorescence Complementation (BiFC). The multicolor BiFC library can be used to probe two different binary interactions simultaneously and is compatible for large-scale interaction screens. The library can also be coupled with established Drosophila genetic resources to analyze interactions in the developmentally relevant expression domain of each protein partner. We provide proof of principle experiments of these various applications, using Hox proteins in the live Drosophila embryo as a case study. Overall this novel collection of ready-to-use fly lines constitutes an unprecedented genetic toolbox for the identification and analysis of protein-protein interactions in vivo.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Biblioteca Gênica , Mapeamento de Interação de Proteínas/métodos , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados , Cor , Drosophila/embriologia , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Fluorescência , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/métodos , Ligação Proteica , Fatores de Transcrição/metabolismo
15.
EMBO J ; 37(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29669860

RESUMO

Palbociclib is a CDK4/6 inhibitor approved for metastatic estrogen receptor-positive breast cancer. In addition to G1 cell cycle arrest, palbociclib treatment results in cell senescence, a phenotype that is not readily explained by CDK4/6 inhibition. In order to identify a molecular mechanism responsible for palbociclib-induced senescence, we performed thermal proteome profiling of MCF7 breast cancer cells. In addition to affecting known CDK4/6 targets, palbociclib induces a thermal stabilization of the 20S proteasome, despite not directly binding to it. We further show that palbociclib treatment increases proteasome activity independently of the ubiquitin pathway. This leads to cellular senescence, which can be counteracted by proteasome inhibitors. Palbociclib-induced proteasome activation and senescence is mediated by reduced proteasomal association of ECM29. Loss of ECM29 activates the proteasome, blocks cell proliferation, and induces a senescence-like phenotype. Finally, we find that ECM29 mRNA levels are predictive of relapse-free survival in breast cancer patients treated with endocrine therapy. In conclusion, thermal proteome profiling identifies the proteasome and ECM29 protein as mediators of palbociclib activity in breast cancer cells.


Assuntos
Neoplasias da Mama/enzimologia , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Piperazinas/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteoma/análise , Piridinas/farmacologia , Temperatura , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proliferação de Células , Senescência Celular , Feminino , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/enzimologia , Recidiva Local de Neoplasia/patologia , Fenótipo , Prognóstico , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteínas Quinases/farmacologia , Taxa de Sobrevida , Ubiquitina/metabolismo
16.
Bioessays ; 39(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28752618

RESUMO

The maintenance of cell size homeostasis has been studied for years in different cellular systems. With the focus on 'what regulates cell size', the question 'why cell size needs to be maintained' has been largely overlooked. Recent evidence indicates that animal cells exhibit nonlinear cell size dependent growth rates and mitochondrial metabolism, which are maximal in intermediate sized cells within each cell population. Increases in intracellular distances and changes in the relative cell surface area impose biophysical limitations on cells, which can explain why growth and metabolic rates are maximal in a specific cell size range. Consistently, aberrant increases in cell size, for example through polyploidy, are typically disadvantageous to cellular metabolism, fitness and functionality. Accordingly, cellular hypertrophy can potentially predispose to or worsen metabolic diseases. We propose that cell size control may have emerged as a guardian of cellular fitness and metabolic activity.


Assuntos
Homeostase/fisiologia , Animais , Tamanho Celular , Humanos , Hipertrofia/fisiopatologia , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia
17.
Trends Cell Biol ; 27(6): 393-402, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28284466

RESUMO

Allometric scaling of metabolic rate results in lower total mitochondrial oxygen consumption with increasing organismal size. This is considered a universal law in biology. Here, we discuss how allometric laws impose size-dependent limits to mitochondrial activity at the cellular level. This cell-size-dependent mitochondrial metabolic activity results in nonlinear scaling of metabolism in proliferating cells, which can explain size homeostasis. The allometry in mitochondrial activity can be controlled through mitochondrial fusion and fission machinery, suggesting that mitochondrial connectivity can bypass transport limitations, the presumed biophysical basis for allometry. As physical size affects cellular functionality, cell-size-dependent metabolism becomes directly relevant for development, metabolic diseases, and aging.


Assuntos
Tamanho Celular , Mitocôndrias/metabolismo , Animais , Divisão Celular , Homeostase , Dinâmica Mitocondrial , Modelos Biológicos
18.
Cell Cycle ; 16(2): 189-199, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-27929715

RESUMO

To identify cell cycle regulators that enable cancer cells to replicate DNA and divide in an unrestricted manner, we performed a parallel genome-wide RNAi screen in normal and cancer cell lines. In addition to many shared regulators, we found that tumor and normal cells are differentially sensitive to loss of the histone genes transcriptional regulator CASP8AP2. In cancer cells, loss of CASP8AP2 leads to a failure to synthesize sufficient amount of histones in the S-phase of the cell cycle, resulting in slowing of individual replication forks. Despite this, DNA replication fails to arrest, and tumor cells progress in an elongated S-phase that lasts several days, finally resulting in death of most of the affected cells. In contrast, depletion of CASP8AP2 in normal cells triggers a response that arrests viable cells in S-phase. The arrest is dependent on p53, and preceded by accumulation of markers of DNA damage, indicating that nucleosome depletion is sensed in normal cells via a DNA-damage -like response that is defective in tumor cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Genoma , Neoplasias/metabolismo , Neoplasias/patologia , Nucleossomos/metabolismo , Interferência de RNA , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , DNA/biossíntese , Replicação do DNA , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Osteossarcoma/genética , Osteossarcoma/patologia , Fosforilação , RNA Interferente Pequeno/metabolismo , Fase S , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo
19.
Front Cell Dev Biol ; 5: 115, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29326932
20.
Dev Cell ; 39(3): 370-382, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27720611

RESUMO

Eukaryotic cells attempt to maintain an optimal size, resulting in size homeostasis. While cellular content scales isometrically with cell size, allometric laws indicate that metabolism per mass unit should decline with increasing size. Here we use elutriation and single-cell flow cytometry to analyze mitochondrial scaling with cell size. While mitochondrial content increases linearly, mitochondrial membrane potential and oxidative phosphorylation are highest at intermediate cell sizes. Thus, mitochondrial content and functional scaling are uncoupled. The nonlinearity of mitochondrial functionality is cell size, not cell cycle, dependent, and it results in an optimal cell size whereby cellular fitness and proliferative capacity are maximized. While optimal cell size is controlled by growth factor signaling, its establishment and maintenance requires mitochondrial dynamics, which can be controlled by the mevalonate pathway. Thus, optimization of cellular fitness and functionality through mitochondria can explain the requirement for size control, as well as provide means for its maintenance.


Assuntos
Tamanho Celular , Mitocôndrias/metabolismo , Animais , Ciclo Celular , Respiração Celular , Drosophila/citologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Insulina/metabolismo , Células Jurkat , Potencial da Membrana Mitocondrial , Redes e Vias Metabólicas , Ácido Mevalônico/metabolismo , Dinâmica Mitocondrial , Dinâmica não Linear , Prenilação de Proteína , Transdução de Sinais , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA