Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(6): e0287691, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384712

RESUMO

Local and regional food supply chains are gaining increasing support from public and private sectors for their contributions to economic development and promoting sustainability. However, the impacts of regionalization are not well understood. We employ a spatial-temporal model of production and transportation to evaluate the supply chain outcomes of a decade-long process of food regionalization for fresh broccoli in the eastern United States (US). Our results indicate that eastern broccoli supply chains displaced products sourced from the western US and met over 15% of the annual demand in eastern markets in 2017. We find that total broccoli supply chain costs and food miles increased in the period 2007-2017. Nevertheless, eastern-grown broccoli has contributed to reducing regional food miles in the eastern region (from 365 miles in 2007 to 255 miles in 2017) and experienced only modest increases in supply chains costs (a 3.4% increase, compared to a 16.5% increase for broccoli shipped from western US) during the same period. Our results provide valuable information for policymakers and the fresh produce industry interested in promoting regional food supply chains.


Assuntos
Brassica , Desenvolvimento Econômico , Alimentos , Indústrias , Setor Privado
2.
Nat Plants ; 8(8): 897-905, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35864172

RESUMO

Organic agriculture outperforms conventional agriculture across several sustainability metrics due, in part, to more widespread use of agroecological practices. However, increased entry of large-scale farms into the organic sector has prompted concerns about 'conventionalization' through input substitution, agroecosystem simplification and other changes. We examined this shift in organic agriculture by estimating the use of agroecological practices across farm size and comparing indicators of conventionalization. Results from our national survey of 542 organic fruit and vegetable farmers show that fewer agroecological practices were used on large farms, which also exhibited the greatest degree of conventionalization. Intercropping, insectary plantings and border plantings were at least 1.4 times more likely to be used on small (0.4-39 cropland ha) compared with large (≥405 cropland ha) farms, whereas reduced tillage was less likely and riparian buffers were more likely on small compared with medium (40-404 cropland ha) farms. Because decisions about management practices can drive environmental sustainability outcomes, policy should support small and medium farms that already use agroecological practices while encouraging increased use of agroecological practices on larger farms.


Assuntos
Agricultura , Agricultura Orgânica , Agricultura/métodos , Fazendeiros , Fazendas , Humanos , Estados Unidos
3.
Hortic Res ; 7: 159, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33082966

RESUMO

Worldwide, broccoli (Brassica oleracea var. italica) is among the most economically important, nutritionally rich, and widely-grown vegetable crops. To explore the genomic basis of the dramatic changes in broccoli morphology in the last century, we evaluated 109 broccoli or broccoli/cauliflower intermediates for 24 horticultural traits. Genotype-by-sequencing markers were used to determine four subpopulations within italica: Calabrese broccoli landraces and hybrids, sprouting broccoli, and violet cauliflower, and to evaluate between and within group relatedness and diversity. While overall horticultural quality and harvest index of improved hybrid broccoli germplasm has increased by year of cultivar release, this improvement has been accompanied by a considerable reduction in allelic diversity when compared to the larger pool of germplasm. Two landraces are the most likely founding source of modern broccoli hybrids, and within these modern hybrids, we identified 13 reduction-in-diversity genomic regions, 53 selective sweeps, and 30 (>1 Mbp) runs of homozygosity. Landrace accessions collected in southern Italy contained 4.8-fold greater unique alleles per accessions compared to modern hybrids and provide a valuable resource in subsequent improvement efforts. This work broadens the understanding of broccoli germplasm, informs conservation efforts, and enables breeding for complex quality traits and regionally adapted cultivars.

4.
Front Plant Sci ; 10: 1104, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620146

RESUMO

Improving horticultural quality in regionally adapted broccoli (Brassica oleracea var. italica) and other B. oleracea crops is challenging due to complex genetic control of traits affecting morphology, development, and yield. Mapping horticultural quality traits to genomic loci is an essential step in these improvement efforts. Understanding the mechanisms underlying horticultural quality enables multi-trait marker-assisted selection for improved, resilient, and regionally adapted B. oleracea germplasm. The publicly-available biparental double-haploid BolTBDH mapping population (Chinese kale × broccoli; N = 175) was evaluated for 25 horticultural traits in six trait classes (architecture, biomass, phenology, leaf morphology, floral morphology, and head quality) by multiple quantitative trait loci mapping using 1,881 genotype-by-sequencing derived single nucleotide polymorphisms. The physical locations of 56 single and 41 epistatic quantitative trait locus (QTL) were identified. Four head quality QTL (OQ_C03@57.0, OQ_C04@33.3, OQ_CC08@25.5, and OQ_C09@49.7) explain a cumulative 81.9% of phenotypic variance in the broccoli heading phenotype, contain the FLOWERING LOCUS C (FLC) homologs Bo9g173400 and Bo9g173370, and exhibit epistatic effects. Three key genomic hotspots associated with pleiotropic control of the broccoli heading phenotype were identified. One phenology hotspot reduces days to flowering by 7.0 days and includes an additional FLC homolog Bo3g024250 that does not exhibit epistatic effects with the three horticultural quality hotspots. Strong candidates for other horticultural traits were identified: BoLMI1 (Bo3g002560) associated with serrated leaf margins and leaf apex shape, BoCCD4 (Bo3g158650) implicated in flower color, and BoAP2 (Bo1g004960) implicated in the hooked sepal horticultural trait. The BolTBDH population provides a framework for B. oleracea improvement by targeting key genomic loci contributing to high horticultural quality broccoli and enabling de novo mapping of currently unexplored traits.

5.
Hortic Res ; 5: 38, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977574

RESUMO

Brassica oleracea forms a diverse and economically significant crop group. Improvement efforts are often hindered by limited knowledge of diversity contained within available germplasm. Here, we employ genotyping-by-sequencing to investigate a diverse panel of 85 landrace and improved B. oleracea broccoli, cauliflower, and Chinese kale entries. Ultimately, 21,680 high-quality SNPs were used to reveal a complex and admixed population structure and clarify phylogenetic relationships among B. oleracea groups. Each broccoli landrace contained, on average, 8.4 times as many unique alleles as an improved broccoli and landraces collectively represented 81% of all broccoli-specific alleles. Commercial broccoli hybrids were largely represented by a single subpopulation identified within a complex population structure. Greater allelic diversity in landrace broccoli and 96.1% of SNPs differentiating improved cauliflower from landrace cauliflower were common to the larger pool of broccoli germplasm, supporting a parallel or later development of cauliflower due to introgression events from broccoli. Chinese kale was readily distinguished by principal coordinate analysis. Genotyping was accomplished with and without reliance upon a reference genome producing 141,317 and 20,815 filtered SNPs, respectively, supporting robust SNP discovery methods in neglected or unimproved crop groups that lack a reference genome. This work clarifies the population structure, phylogeny, and domestication footprints of landrace and improved B. oleracea broccoli using many genotyping-by-sequencing markers. Additionally, a large pool of genetic diversity contained in broccoli landraces is described which may enhance future breeding efforts.

6.
Mol Plant Microbe Interact ; 25(9): 1264-71, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22512380

RESUMO

Some plant-symbiotic strains of the genus Trichoderma colonize roots and induce profound changes in plant gene expression that lead to enhanced growth, especially under biotic and abiotic stresses. In this study, we tested the hypothesis that one of the protective mechanisms enhanced by T. harzianum T22 colonization is the antioxidant defense mechanism. Having established that strain T22 modulates the expression of the genes encoding antioxidant enzymes, the status of antioxidant defense of tomato seedlings in response to colonization by T22 and water deficit was investigated. Total ascorbate or glutathione levels were not affected by either stimuli, but under water deficit, antioxidant pools became more oxidized (lower ratios of reduced to oxidized forms), whereas colonized plants maintained redox state as high as or higher than unstressed and untreated plants. The enhanced redox state of colonized plants could be explained by their higher activity of ascorbate and glutathione-recycling enzymes, higher activity of superoxide dismutase, catalase, and ascorbate peroxidase, in both root and shoot throughout the experiment. Similar enzymes were induced in uncolonized plants in response to water-deficit stress but to a lower extent when compared with colonized plants. This orchestrated enhancement in activity of reactive oxygen species (ROS)-scavenging pathways in colonized plants in response to stress supports the hypothesis that enhanced resistance of colonized plants to water deficit is at least partly due to higher capacity to scavenge ROS and recycle oxidized ascorbate and glutathione, a mechanism that is expected to enhance tolerance to abiotic and biotic stresses.


Assuntos
Antioxidantes/metabolismo , Plântula/fisiologia , Solanum lycopersicum/microbiologia , Solanum lycopersicum/fisiologia , Trichoderma/fisiologia , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Estresse Fisiológico , Simbiose , Fatores de Tempo
7.
Phytopathology ; 100(11): 1213-21, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20649416

RESUMO

Trichoderma spp. are endophytic plant symbionts that are widely used as seed treatments to control diseases and to enhance plant growth and yield. Although some recent work has been published on their abilities to alleviate abiotic stresses, specific knowledge of mechanisms, abilities to control multiple plant stress factors, their effects on seed and seedlings is lacking. We examined the effects of seed treatment with T. harzianum strain T22 on germination of seed exposed to biotic stress (seed and seedling disease caused by Pythium ultimum) and abiotic stresses (osmotic, salinity, chilling, or heat stress). We also evaluated the ability of the beneficial fungus to overcome physiological stress (poor seed quality induced by seed aging). If seed were not under any of the stresses noted above, T22 generally had little effect upon seedling performance. However, under stress, treated seed germinated consistently faster and more uniformly than untreated seeds whether the stress was osmotic, salt, or suboptimal temperatures. The consistent response to varying stresses suggests a common mechanism through which the plant-fungus association enhances tolerance to a wide range of abiotic stresses as well as biotic stress. A common factor that negatively affects plants under these stress conditions is accumulation of toxic reactive oxygen species (ROS), and we tested the hypothesis that T22 reduced damages resulting from accumulation of ROS in stressed plants. Treatment of seeds reduced accumulation of lipid peroxides in seedlings under osmotic stress or in aged seeds. In addition, we showed that the effect of exogenous application of an antioxidant, glutathione, or application of T22, resulted in a similar positive effect on seed germination under osmotic stress or in aged seed. This evidence supports the model that T. harzianum strain T22 increases seedling vigor and ameliorates stress by inducing physiological protection in plants against oxidative damage.


Assuntos
Plântula/microbiologia , Sementes/microbiologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Estresse Fisiológico , Trichoderma/fisiologia , Doenças das Plantas/prevenção & controle , Pythium/fisiologia , Microbiologia do Solo , Trichoderma/classificação , Água
8.
J Exp Bot ; 59(2): 421-33, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18332227

RESUMO

The regulation of reproductive development in cauliflower (Brassica oleracea var. botrytis DC) and broccoli (B. oleracea L. var. italica Plenck) is unusual in that most enlargement occurs while development is arrested at a distinct stage. Cauliflower and broccoli curds are composed of inflorescence meristems and flower buds, respectively. To determine whether this arrest is maintained by altered expression of the genes that specify these steps in Arabidopsis, the expression of each copy of their homologues (MADS-box genes BoAP1-a, BoAP1-c, BoCAL, BoFUL-a, BoFUL-b, BoFUL-c, and BoFUL-d; and non-MADS-box genes BoLFY, AP2, UFO, and BoTFL1) and the cauliflower curd-specific genes CCE1 and BoREM1 were measured simultaneously in heads that were arrested at different developmental stages by varying temperature, but had a common genotype. Transcript abundance of BoFUL paralogues and BoLFY was highest at the cauliflower stage of arrest, consistent with these genes initiating inflorescence meristems. The expression of other genes was the same regardless of the developmental stage of arrest. The expected models can therefore be excluded, wherein maintenance of arrest at the inflorescence meristem is a consequence of suppression of BoCAL, BoAP1-a, or BoLFY, or failure to suppress BoTFL1. Floral primordia and floral buds were normal in boap1-a boap1-c bocal triple mutants; therefore, other meristem identity genes can specify floral initiation (A-function) in B. oleracea. BoTFL1, a strong repressor of flowering in Arabidopsis, did not suppress the formation of the floral primordium in B. oleracea. Initiation of floral primordia and enlargement of floral buds in broccoli and cauliflower is not controlled solely by homologues of the genes that do so in Arabidopsis.


Assuntos
Brassica/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo , Temperatura , Brassica/genética , Brassica/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes de Plantas , Genótipo , Meristema/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA