Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 47(4): A123-33, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18239694

RESUMO

The 1964 publication by Emmett Leith and Juris Upatnieks [J. Opt. Soc. Am. 54, 1295 (1964)] introduced the possibility of using holograms to record three-dimensional (3D) objects. Since then, there has been an interest in creating display holograms, i.e., holograms primarily produced to show objects in 3D. More recently, full color holography has become a reality, which was predicted in the 1964 paper. To record a hologram in which both the 3D shape and the color of the object are accurately reproduced, at least three laser wavelengths are needed. By computer simulation of the holographic color rendering process, the required amount of laser wavelengths and their distribution within the visible electromagnetic spectrum have been investigated. The quality of a color hologram also depends on the properties of the recording material. The demand on a panchromatic material for color holography is described. Recording techniques for color holograms are presented as well as the future of color holography as the perfect 3D imaging technique.

2.
Appl Opt ; 41(8): 1522-33, 2002 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-11928753

RESUMO

Silver halide sensitized gelatin (SHSG) holograms are similar to holograms recorded in dichromated gelatin (DCG), the main recording material for holographic optical elements (HOEs). The drawback of DCG is its low energetic sensitivity and limited spectral response. Silver halide materials can be processed in such away that the final hologram will have properties like a DCG hologram. Recently this technique has become more interesting since the introduction of new ultra-fine-grain silver halide (AgHal) emulsions. In particular, high spatial-frequency fringes associated with HOEs of the reflection type are difficult to construct when SHSG processing methods are employed. Therefore an optimized processing technique for reflection HOEs recorded in the new AgHal materials is introduced. Diffraction efficiencies over 90% can be obtained repeatably for reflection diffraction gratings. Understanding the importance of a selective hardening process has made it possible to obtain results similar to conventional DCG processing. The main advantage of the SHSG process is that high-sensitivity recording can be performed with laser wavelengths anywhere within the visible spectrum. This simplifies the manufacturing of high-quality, large-format HOEs, also including high-quality display holograms of the reflection type in both monochrome and full color.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA