RESUMO
OBJECTIVE: To investigate how running, cycling, and sedentary cardiovascular stress impact biomarkers of cartilage turnover acutely in subjects with knee osteoarthritis (OA). DESIGN: This was a sequential, cross-over, clinical study. Forty subjects with primary knee OA underwent moderate-to-high-intensity cycling, running, and adrenaline infusion on separate days. Blood was sampled before, during, and at 6-time points after intervention. On a control day, similar samples were taken. Biomarkers of type II collagen degradation (C2M, T2CM, Coll2-1, Coll2-1NO2), formation (PRO-C2), and aggrecan degradation (ARGS) were measured. RESULTS: Mean age was 60.4 years, 40% were male, 45% had cumulated Kellgren-Lawrence (KL)-grade (Right + Left knee) of 2 to 3 and 55% had 4 to 6. Analyzing overall changes, area under the curve was significantly lower compared with resting values for ARGS and C2M after cycling and for ARGS after running. Considering individual time points, peak changes in biomarker levels showed reduction in C2M shortly following cycling (T20min = -12.3%, 95% confidence interval [CI]: -19.3% to -5.2%). PRO-C2 increased during cycling (T10min = 14.0%, 95% CI = 4.1% to 23.8%) and running (T20min = 16.5%, 95% CI = 4.3% to 28.6%). T2CM decreased after cycling (T50min = -19.9%, 95% CI = -29.2% to -10.6%), running (T50min = -22.8%, 95% CI = -32.1% to -13.5%), and infusion of adrenaline (peak, T50min = -9.8%, 95% CI = -20.0% to 0.4%). A latent increase was seen in Coll2-1 240 minutes after running (T260min = 21.7%, 95% CI = -1.6% to 45.1%). CONCLUSION: Exercise had an impact on cartilage markers, but it did not suggest any detrimental effect on cartilage. Changes following adrenaline infusion suggest a sympathomimetic influence on the serological composition of biomarkers.
RESUMO
Objective: Arthritic cartilage is primed for mechanical damage. Joint biochemical markers (JBM) could provide insight into the impact of mechanical stimulation on joint tissue turnover in osteoarthritis (OA) of potential use in clinical OA research and practice. However, existing studies of the acute impact of physical activities (PA) on JBM often contain risks of substantial bias. The purpose of this scoping review was to critically review and discuss existing reports of acute joint tissue turnover as reflected in JBM in relation to PA in OA and propose considerations for future research. Design: We searched PubMed, Embase, and Scopus and reference lists for original reports on the acute impact of PA on JBM in human OA. Identified studies were reviewed by two reviewers forming the basis for the discussion of methodology. Results: Search in databases resulted in nine eligible papers after full-text evaluation. Two additional papers were identified through reference lists, resulting in 11 papers included in this review. Ten investigated knee OA and one investigated hand OA. Biomarkers described were related to turnover of type II collagen, aggrecan, and cartilage oligomeric matrix protein. Conclusions: The literature is dominated by small, simplistic studies, but suggests that mechanical stimulation can induce acute changes in joint biomarkers. In order to diminish the existing bias in future studies, it is important to recognize methodological considerations e.g. patient and biomarker selection as well as peri-interventional control. Common potential sources of bias include the acute shift in plasma volume due to cardiovascular stress and postural changes.
RESUMO
Introduction: Visual Analogue Scale (VAS) and the pain subscale of the Western Ontario and McMaster Universities Arthritis Index (WOMAC) are commonly used measuring tools of osteoarthritis (OA) pain. Objectives: The objective of this cross-sectional study was to explore the associations between single-question VAS pain and the weight-bearing and non-weight-bearing domains of WOMAC pain. Methods: Data from 2093 patients with OA participating in 2 phase 3 clinical trials were included for post hoc analyses. Univariate Pearson correlations and comparison of r values were made using z statistics obtained using the Fisher r to z test for all items of the VAS pain scale, the WOMAC pain subscale, the weight-bearing and non-weight-bearing constructs of WOMAC pain subscale, and by subgroups of WOMAC pain quintiles and Kellgren-Lawrence grades. Results: The correlations between VAS pain and WOMAC pain were significant (r = 0.67, P < 0.001) with a slope of 0.57 (95% confidence interval [CI]: 0.54-0.61). A similar correlation was found for weight-bearing pain (r = 0.68, P < 0.001, slope: 0.62 (95% CI: 0.59-0.65) but significantly lower for non-weight-bearing pain (r = 0.55, P < 0.001, slope: 0.49 (95% CI: 0.46-0.52). The degree of disagreement between the 2 instruments seemed to be lesser in the extreme ends of the scales, and the observed association between Kellgren-Lawrence grade and disagreement between VAS and WOMAC was driven by non-weight-bearing pain. Conclusion: In conclusion, VAS pain and WOMAC pain subscale correlation was found to be moderate and the VAS pain scale correlated more accurately with the WOMAC pain weight-bearing questions. This constitutes novel insight into patient with OA pain reporting.
RESUMO
NEW FINDINGS: What is the central question in this study? Atrial natriuretic peptide (ANP) is secreted in response to atrial wall distension and thus allows for evaluation, albeit indirect, of the central blood volume. Adrenaline has chronotropic and inotropic effects. We evaluated whether the chronotropic and inotropic effects of adrenaline were reflected in mid-regional proANP. What is the main finding and its importance? Central blood volume remained stable with infusion of adrenaline and yet mid-regional proANP increased. Thus, the chronotropic and inotropic state of the heart or adrenaline directly induces release of ANP variants from the myocytes. ABSTRACT: Atrial natriuretic peptide (ANP) has vasodilatory, natriuretic and diuretic properties. It is secreted in response to atrial wall distension and thereby provides an indirect evaluation of central blood volume (CBV). Adrenaline has chronotropic and inotropic effects that increase cardiac output. In the present study, we evaluated whether these effects were influenced by an increase in CBV and reflected in mid-regional proANP (MR-proANP) concentrations in the circulation, a stable proxy marker of bioactive ANP. Changes in CBV were evaluated by thoracic electrical admittance and haemodynamic variables monitored by pulse-contour analysis during two intervals with graded infusion of adrenaline. Adrenaline infusion increased heart rate (by 33 ± 18%) and stroke volume (by 6 ± 13%), hence cardiac output (by 42 ± 23%; all P < 0.05). The increase in cardiac output did not result from an increase in CBV, because thoracic electrical admittance remained stable (-3 ± 17%; P = 0.230). Serum MR-proANP concentrations were increased (by 26 ± 25%; P < 0.001) by adrenaline infusion and remained elevated 60 min postinfusion. We conclude that MR-proANP in the circulation is affected not only by CBV, but also by increased chronotropy/inotropy of the heart, or that adrenaline directly induces release of ANP variants from the myocytes.
Assuntos
Fator Natriurético Atrial , Epinefrina , Biomarcadores , Volume Sanguíneo , Átrios do CoraçãoRESUMO
Introduction: Plasma volume (PV) changes in response to physical activity, possibly as a consequence of adrenergic activation. We estimated changes in PV in response to common exercise modalities; cycling and running as well as adrenaline infusion and control at rest. Methods: On separate days, forty circulatory healthy subjects [aged 60 years (range: 42-75)] with knee osteoarthritis underwent moderate-high intensity cycling, running, and intravenous adrenaline infusion to mimic the circulatory response to exercise. Blood samples were obtained from peripheral veins taken at several pre-defined time points before, during, and after the interventions. PV changes were estimated using venous hemoglobin and the derived hematocrit. The temporal associations between PV and selected biomarkers were explored. Results: Changes in PV were observed during all four interventions, and the response to cycling and running was similar. Compared to rest, PV decreased by -14.3% (95% CI: -10.0 to -18.7) after cycling, -13.9% (95% CI: -10.9 to -17.0) after running, and -7.8% (95% CI: -4.2 to -11.5) after adrenaline infusion. Conclusion: PV decreased in response to moderate-high intensity running and cycling. Adrenaline infusion mimicked the PV change observed during exercise, suggesting a separate influence of autonomic control on blood volume homeostasis. In perspective, a temporal association between PV and biomarker dynamics suggests that consideration of PV changes could be relevant when reporting plasma/serum constituents measured during exercise, but more research is needed to confirm this.
RESUMO
PURPOSE: To investigate acute changes in biochemical markers of bone and cartilage turnover in response to moderate intensity exercise with and without joint impact in healthy human subjects. METHODS: A randomized, cross-over, exploratory, clinical study was conducted. Twenty healthy subjects with no history of joint trauma completed 30 min interventions of standardized moderate intensity cycling and running as well as a resting intervention 1 week apart. Blood samples were taken immediately before, four times after exercise and again the next day. Urine was sampled, before, after and the next day. On the day of rest, samples were taken at timepoints similar to the days of exercise. Markers of type I (CTX-I), II (C2M, CTX-II) and VI (C6M) collagen degradation, cartilage oligomeric matrix protein (COMP) and procollagen C-2 (PRO-C2) was measured. TRIAL REGISTRATION NUMBER: NCT04542655, 02 September 2020, retrospectively registered. RESULTS: CTX-I was different from cycling (4.2%, 95%CI: 0.4-8.0%, p = 0.03) and resting (6.8%, 95%CI: 2.9-10.7%, p = 0.001) after running and the mean change in COMP was different from cycling (10.3%, 95%CI: 1.1-19.5%, p = 0.03), but not from resting (8.6%, 95%CI: - 0.7-17.8%, p = 0.07) after running. Overall, changes in other biomarkers were not different between interventions. CONCLUSION: In this exploratory study, running, but not cycling, at a moderate intensity and duration induced acute changes in biomarkers of bone and cartilage extra-cellular matrix turnover.
Assuntos
Biomarcadores/sangue , Exercício Físico/fisiologia , Articulações/fisiologia , Fragmentos de Peptídeos/metabolismo , Adolescente , Adulto , Idoso , Estudos Cross-Over , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pró-Colágeno/sangue , Adulto JovemRESUMO
Objective: To propose a standardized model for exercise-induced cartilage turnover and investigate residual levels and dynamics of biomarker serum ARGS (sARGS) in primary osteoarthritis (OA) patients and a supportive group of young healthy subjects. Method: The trial is a randomized, cross-over, exploratory study with interventions of exercise and inactivity. 20 subjects with knee OA, as well as 20 young healthy subjects (mean age 25.7 years (range; 19-30), 50% male), underwent cycling, running and resting interventions on separate days one week apart. Blood samples were taken at baseline, immediately, 1, 2, 3 and 24 h after activity start. sARGS was measured by sandwich ELISA. Results: Intraclass correlation between visits were 0.97 and 0.77 for the OA and healthy group, respectively. An acute drop in sARGS in response to high-intensity exercise was observed in both groups. Minute acute sARGS increase was observed in OA subjects in response to moderate intensity running and cycling, which normalized within 24 h. In healthy subjects an acute drop in sARGS was seen immediately after running, but not cycling, and no other changes were observed. A negative correlation between baseline Kellgren-Lawrence (KL) grade and baseline sARGS (r = -0.69, p = 0.002) in OA was found. A negative correlation between age and sARGS was found in healthy subjects (r = -0.67, p = <0.002). Conclusion: sARGS sensitivity to physical activity is considered low and sARGS is a reproducible and stable marker. Minute acute increases in sARGS were observed in the hours following moderate intensity exercise.