Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 10(2): 182-98, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21253660

RESUMO

The Montreal Protocol is working, but it will take several decades for ozone to return to 1980 levels. The atmospheric concentrations of ozone depleting substances are decreasing, and ozone column amounts are no longer decreasing. Mid-latitude ozone is expected to return to 1980 levels before mid-century, slightly earlier than predicted previously. However, the recovery rate will be slower at high latitudes. Springtime ozone depletion is expected to continue to occur at polar latitudes, especially in Antarctica, in the next few decades. Because of the success of the Protocol, increases in UV-B radiation have been small outside regions affected by the Antarctic ozone hole, and have been difficult to detect. There is a large variability in UV-B radiation due to factors other than ozone, such as clouds and aerosols. There are few long-term measurements available to confirm the increases that would have occurred as a result of ozone depletion. At mid-latitudes UV-B irradiances are currently only slightly greater than in 1980 (increases less than ~5%), but increases have been substantial at high and polar latitudes where ozone depletion has been larger. Without the Montreal Protocol, peak values of sunburning UV radiation could have been tripled by 2065 at mid-northern latitudes. This would have had serious consequences for the environment and for human health. There are strong interactions between ozone depletion and changes in climate induced by increasing greenhouse gases (GHGs). Ozone depletion affects climate, and climate change affects ozone. The successful implementation of the Montreal Protocol has had a marked effect on climate change. The calculated reduction in radiative forcing due to the phase-out of chlorofluorocarbons (CFCs) far exceeds that from the measures taken under the Kyoto protocol for the reduction of GHGs. Thus the phase-out of CFCs is currently tending to counteract the increases in surface temperature due to increased GHGs. The amount of stratospheric ozone can also be affected by the increases in the concentration of GHGs, which lead to decreased temperatures in the stratosphere and accelerated circulation patterns. These changes tend to decrease total ozone in the tropics and increase total ozone at mid and high latitudes. Changes in circulation induced by changes in ozone can also affect patterns of surface wind and rainfall. The projected changes in ozone and clouds may lead to large decreases in UV at high latitudes, where UV is already low; and to small increases at low latitudes, where it is already high. This could have important implications for health and ecosystems. Compared to 1980, UV-B irradiance towards the end of the 21st century is projected to be lower at mid to high latitudes by between 5 and 20% respectively, and higher by 2-3% in the low latitudes. However, these projections must be treated with caution because they also depend strongly on changes in cloud cover, air pollutants, and aerosols, all of which are influenced by climate change, and their future is uncertain. Strong interactions between ozone depletion and climate change and uncertainties in the measurements and models limit our confidence in predicting the future UV radiation. It is therefore important to improve our understanding of the processes involved, and to continue monitoring ozone and surface UV spectral irradiances both from the surface and from satellites so we can respond to unexpected changes in the future.


Assuntos
Mudança Climática , Ozônio/análise , Monitoramento de Radiação , Raios Ultravioleta , Poluição do Ar , Animais , Humanos , Cooperação Internacional , Ozônio/química , Raios Ultravioleta/efeitos adversos
3.
Photochem Photobiol Sci ; 6(3): 218-31, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17344959

RESUMO

The Montreal Protocol is working. Concentrations of major ozone-depleting substances in the atmosphere are now decreasing, and the decline in total column amounts seen in the 1980s and 1990s at mid-latitudes has not continued. In polar regions, there is much greater natural variability. Each spring, large ozone holes continue to occur in Antarctica and less severe regions of depleted ozone continue to occur in the Arctic. There is evidence that some of these changes are driven by changes in atmospheric circulation rather than being solely attributable to reductions in ozone-depleting substances, which may indicate a linkage to climate change. Global ozone is still lower than in the 1970s and a return to that state is not expected for several decades. As changes in ozone impinge directly on UV radiation, elevated UV radiation due to reduced ozone is expected to continue over that period. Long-term changes in UV-B due to ozone depletion are difficult to verify through direct measurement, but there is strong evidence that UV-B irradiance increased over the period of ozone depletion. At unpolluted sites in the southern hemisphere, there is some evidence that UV-B irradiance has diminished since the late 1990s. The availability and temporal extent of UV data have improved, and we are now able to evaluate the changes in recent times compared with those estimated since the late 1920s, when ozone measurements first became available. The increases in UV-B irradiance over the latter part of the 20th century have been larger than the natural variability. There is increased evidence that aerosols have a larger effect on surface UV-B radiation than previously thought. At some sites in the Northern Hemisphere, UV-B irradiance may continue to increase because of continuing reductions in aerosol extinctions since the 1990s. Interactions between ozone depletion and climate change are complex and can be mediated through changes in chemistry, radiation, and atmospheric circulation patterns. The changes can be in both directions: ozone changes can affect climate, and climate change can affect ozone. The observational evidence suggests that stratospheric ozone (and therefore UV-B) has responded relatively quickly to changes in ozone-depleting substances, implying that climate interactions have not delayed this process. Model calculations predict that at mid-latitudes a return of ozone to pre-1980 levels is expected by the mid 21st century. However, it may take a decade or two longer in polar regions. Climate change can also affect UV radiation through changes in cloudiness and albedo, without involving ozone and since temperature changes over the 21st century are likely to be about 5 times greater than in the past century. This is likely to have significant effects on future cloud, aerosol and surface reflectivity. Consequently, unless strong mitigation measures are undertaken with respect to climate change, profound effects on the biosphere and on the solar UV radiation received at the Earth's surface can be anticipated. The future remains uncertain. Ozone is expected to increase slowly over the decades ahead, but it is not known whether ozone will return to higher levels, or lower levels, than those present prior to the onset of ozone depletion in the 1970s. There is even greater uncertainty about future UV radiation, since it will be additionally influenced by changes in aerosols and clouds.


Assuntos
Biologia , Planeta Terra , Raios Ultravioleta , Efeito Estufa , Humanos , Ozônio/análise , Estações do Ano , Fatores de Tempo , Raios Ultravioleta/efeitos adversos
4.
J Photochem Photobiol B ; 66(1): 2-12, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11849977

RESUMO

We analysed and compared the functioning of UV-B screening pigments in plants from marine, fresh water and terrestrial ecosystems, along the evolutionary line of cyanobacteria, unicellular algae, primitive multicellular algae, charophycean algae, lichens, mosses and higher plants, including amphibious macrophytes. Lichens were also included in the study. We were interested in the following key aspects: (a) does the water column function effectively as an 'external UV-B filter'?; (b) do aquatic plants need less 'internal UV-B screening' than terrestrial plants?; (c) what role does UV screening play in protecting the various plant groups from UV-B damage, such as the formation of thymine dimers?; and (d) since early land 'plants' (such as the predecessors of present-day cyanobacteria, lichens and mosses) experienced higher UV-B fluxes than higher plants, which evolved later, are primitive aquatic and land organisms (cyanobacteria, algae, lichens, mosses) better adapted to present-day levels of UV-B than higher plants? Furthermore, polychromatic action spectra for the induction of UV screening pigments of aquatic organisms have been determined. This is relevant for translating 'physical' radiation measurements of solar UV-B into 'biological' and 'ecological' effects. From the action spectra, radiation amplification factors (RAFs) have been calculated. These action spectra allow us to determine any mitigating or antagonistic effects in the ecosystems and therefore qualify the damage prediction for the ecosystems under study. We summarize and discuss the main results based on three years of research of four European research groups. The central theme of the work was the investigation of the effectiveness of the various screening compounds from the different species studied in order to gain some perspective of the evolutionary adaptations from lower to higher plant forms. The induction of mycosporine-like amino acids (MAAs) was studied in the marine dinoflagellate Gyrodinium dorsum, the green algal species Prasiola stipitata and in the cyanobacterium Anabaena sp. While visible (400-700 nm) and long wavelength UV-A (315-400 nm) showed only a slight effect, MAAs were effectively induced by UV-B (280-315 nm). The growth of the lower land organisms studied, i.e. the lichens Cladina portentosa, Cladina foliacaea and Cladonia arbuscula, and the club moss Lycopodiumannotinum, was not significantly reduced when grown under elevated UV-B radiation (simulating 15% ozone depletion). The growth in length of the moss Tortula ruralis was reduced under elevated UV-B. Of the aquatic plants investigated the charophytes Chara aspera showed decreased longitudinal growth under elevated UV-B. In the 'aquatic higher plants' studied, Ceratophyllum demersum, Batrachium trichophyllum and Potamogeton alpinus, there was no such depressed growth with enhanced UV-B. In Chara aspera, neither MAAs nor flavonoids could be detected. Of the terrestrial higher plants studied, Fagopyrum esculentum, Deschampsia antarctica, Vicia faba, Calamagrostis epigejos and Carex arenaria, the growth of the first species was depressed with enhanced UV-B, in the second species length growth was decreased, but the shoot number was increased, and in the latter two species of a dune grassland there was no reduced growth with enhanced UV-B. In the dune grassland species studied outdoors, at least five different flavonoids appeared in shoot tissue. Some of the flavonoids in the monocot species, which were identified and quantified with HPLC, included orientin, luteolin, tricin and apigenin. A greenhouse study with Vicia faba showed that two flavonoids (aglycones) respond particularly to enhanced UV-B. Of these, quercetin is UV-B inducible and mainly located in epidermal cells, while kaempferol occurs constitutively. In addition to its UV-screening function, quercetin may also act as an antioxidant. Polychromatic action spectra were determined for induction of the UV-absorbing pigments in three photosynthetic organisms, representing very different taxonomic groups and different habitats. In ultraviolet photobiology, action spectra mainly serve two purposes: (1) identification of the molecular species involved in light absorption; and (2) calculation of radiation amplification factors for assessing the effect of ozone depletion. Radiation amplification factors (RAFs) were calculated from the action spectra. In a somewhat simplified way, RAF can be defined as the percent increase of radiation damage for a 1% depletion of the ozone layer. Central European summer conditions were used in the calculations, but it has been shown that RAF values are not critically dependent on latitude or season. If only the ultraviolet spectral region is considered, the RAF values obtained are 0.7 for the green alga Prasiola stipitata, 0.4 for the dinoflagellate Gyrodinium dorsum, and 1.0 for the cyanobacterium Anabaena sp. In the case of P. stipitata, however, the effect of visible light (PAR, photosynthetically active radiation, 400-700 nm) is sufficient to lower the RAF to about 0.4, while the PAR effect for G. dorsum is negligible. RAFs for some damage processes, such as for DNA damage (RAF=2.1 if protective effects or photorepair are not considered [1]), are higher than those above. Our interpretation of this is that if the ozone layer is depleted, increased damaging radiation could overrule increased synthesis of protective pigments. In addition to investigating the functional effectiveness of the different screening compounds, direct UV effects on a number of key processes were also studied in order to gain further insight into the ability of the organisms to withstand enhanced UV-B radiation. To this end, the temperature-dependent repair of cyclobutane dimers (CPD) and (6-4) photoproducts induced by enhanced UV-B was studied in Nicotiana tabacum, and the UV-B induction of CPD was studied in the lichen Cladonia arbuscula. Also, photosynthesis and motility were monitored and the response related to the potential function of the screening compounds of the specific organism.


Assuntos
DNA de Plantas/efeitos da radiação , Flavonoides , Quempferóis , Plantas/efeitos da radiação , Quercetina/análogos & derivados , Raios Ultravioleta , Evolução Biológica , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Ecossistema , Conformação Molecular , Plantas/química , Plantas/genética , Plantas/metabolismo , Quercetina/metabolismo , Temperatura
5.
Adv Space Res ; 30(6): 1557-62, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12575721

RESUMO

Plants have evolved under the influence of UV-B radiation and have acquired systems for monitoring it and investing appropriate resources for protection against it, i.e., filters, quenchers of radicals and reactive oxygen species, and repair systems. An hypothesis for how plants monitor radiation has been presented.


Assuntos
Evolução Biológica , Plantas/efeitos da radiação , Tolerância a Radiação , Raios Ultravioleta , Aminoácidos/metabolismo , Cianobactérias , Reparo do DNA , Desidrocolesteróis/metabolismo , Desoxirribodipirimidina Fotoliase/metabolismo , Eucariotos , Flavonoides/metabolismo , Pigmentos Biológicos , Plantas/metabolismo
6.
J Photochem Photobiol B ; 62(1-2): 118-22, 2001 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-11693362

RESUMO

Provitamin D2, vitamin D2 and vitamin D3 were identified in the thallus of a lichen species, Cladina arbuscula (Wallr.) Hale and W.L. Culb. The identification of vitamin D3 was supported by: (1) co-chromatography in both reverse and straight phase HPLC (high performance liquid chromatography), (2) ultraviolet absorption spectrum, and (3) molecular ion peaks demonstrated by ESI (electrospray ionisation) mass spectrometry. The contents of vitamin D3 range from 0.67 to 2.04 µg g⁻¹ dry matter in the thalli of C. arbuscula specimens grown under different natural conditions, while provitamin D3 could not be detected. The ranges for provitamin D2 and vitamin D2 were 89-146 and 0.22-0.55 µg g⁻¹ dry matter, respectively, while the contents of provitamin D3 were below the detection limit (0.01 microg g(-1) dry matter). When C. arbuscula thalli collected at different latitudes from northern Finland to Greece were compared, a positive correlation of vitamin D2 and D3 contents with modelled UV-B radiation at the collection sites was found. A single sample of C. rangiferina from northern Finland gave much higher values for the vitamins. A possible reason could be the lower content of UV-B absorbing pigment in the latter species.


Assuntos
Ascomicetos/fisiologia , Desidrocolesteróis/efeitos da radiação , Raios Ultravioleta , Ascomicetos/efeitos da radiação , Ergocalciferóis/efeitos da radiação
7.
Int J Circumpolar Health ; 59(1): 26-32, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10850004

RESUMO

Although numerous investigations have been carried out concerning the occurrence of vitamin D (D2 and D3) and their provitamins in different foodstuffs, about the effects of vitamin D intake on the human body as well as the cellular effects of the physiologically active form of vitamin D, there are almost no studies on vitamin D in an ecological context. One source for vitamin D is fish. But fish cannot synthesize vitamin D, nor provitamin D. Both originate at the beginning of the food chain, in phytoplankton. It is likely that the conversion of provitamin D (D2 and D3) to vitamin D can take place only under the influence of ultraviolet-B radiation in algae. Therefore the vitamin/provitamin ratio can perhaps be used as a much needed internal "exposure meter" for UV-B radiation. As is well known, provitamin D3 (7-dehydrocholesterol) can be converted to vitamin D3 also in human skin under the influence of ultraviolet-B radiation. Little is known about which species or groups of planktonic algae are capable of vitamin D synthesis, since only natural mixtures of algae and a few defined species have been analyzed. We have observed that reindeer lichen contains vitamin D2 and D3. For plant scientists vitamin D is interesting also because it is synthesized by some (but not all) higher plants, and acts as a growth substance in plants. Provitamin D2 (ergosterol) is synthesized by many fungi, and this fact may explain some traits of plant-fungal symbiosis.


Assuntos
Meio Ambiente , Eucariotos/química , Raios Ultravioleta , Vitamina D/química , Eucariotos/fisiologia , Fotossíntese , Fenômenos Fisiológicos Vegetais
8.
J Photochem Photobiol B ; 46(1-3): 5-19, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9894350

RESUMO

Stratospheric ozone levels are near their lowest point since measurements began, so current ultraviolet-B (UV-B) radiation levels are thought to be close to their maximum. Total stratospheric content of ozone-depleting substances is expected to reach a maximum before the year 2000. All other things being equal, the current ozone losses and related UV-B increases should be close to their maximum. Increases in surface erythemal (sunburning) UV radiation relative to the values in the 1970s are estimated to be: about 7% at Northern Hemisphere mid-latitudes in winter/spring; about 4% at Northern Hemisphere mid-latitudes in summer/fall; about 6% at Southern Hemisphere mid-latitudes on a year-round basis; about 130% in the Antarctic in spring; and about 22% in the Arctic in spring. Reductions in atmospheric ozone are expected to result in higher amounts of UV-B radiation reaching the Earth's surface. The expected correlation between increases in surface UV-B radiation and decreases in overhead ozone has been further demonstrated and quantified by ground-based instruments under a wide range of conditions. Improved measurements of UV-B radiation are now providing better geographical and temporal coverage. Surface UV-B radiation levels are highly variable because of cloud cover, and also because of local effects including pollutants and surface reflections. These factors usually decrease atmospheric transmission and therefore the surface irradiances at UV-B as well as other wavelengths. Occasional cloud-induced increases have also been reported. With a few exceptions, the direct detection of UV-B trends at low- and mid-latitudes remains problematic due to this high natural variability, the relatively small ozone changes, and the practical difficulties of maintaining long-term stability in networks of UV-measuring instruments. Few reliable UV-B radiation measurements are available from pre-ozone-depletion days. Satellite-based observations of atmospheric ozone and clouds are being used, together with models of atmospheric transmission, to provide global coverage and long-term estimates of surface UV-B radiation. Estimates of long-term (1979-1992) trends in zonally averaged UV irradiances that include cloud effects are nearly identical to those for clear-sky estimates, providing evidence that clouds have not influenced the UV-B trends. However, the limitations of satellite-derived UV estimates should be recognized. To assess uncertainties inherent in this approach, additional validations involving comparisons with ground-based observations are required. Direct comparisons of ground-based UV-B radiation measurements between a few mid-latitude sites in the Northern and Southern Hemispheres have shown larger differences than those estimated using satellite data. Ground-based measurements show that summertime erythemal UV irradiances in the Southern Hemisphere exceed those at comparable latitudes of the Northern Hemisphere by up to 40%, whereas corresponding satellite-based estimates yield only 10-15% differences. Atmospheric pollution may be a factor in this discrepancy between ground-based measurements and satellite-derived estimates. UV-B measurements at more sites are required to determine whether the larger observed differences are globally representative. High levels of UV-B radiation continue to be observed in Antarctica during the recurrent spring-time ozone hole. For example, during ozone-hole episodes, measured biologically damaging radiation at Palmer Station, Antarctica (64 degrees S) has been found to approach and occasionally even exceed maximum summer values at San Diego, CA, USA (32 degrees N). Long-term predictions of future UV-B levels are difficult and uncertain. Nevertheless, current best estimates suggest that a slow recovery to pre-ozone depletion levels may be expected during the next half-century. (ABSTRACT TRUNCATED)


Assuntos
Raios Ultravioleta , Planeta Terra , Humanos
9.
New Phytol ; 140(4): 691-697, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33862955

RESUMO

The aim of this work was to assess whether or not oxidative stress had developed in a dwarf shrub bilberry (Vaccinium myrtillus L.) under long-term exposure to enhanced levels of ultraviolet-B (u.v.-B) radiation. The bilberry plants were exposed to increased u.v.-B representing a 15% stratospheric ozone depletion for seven full growing seasons (1991-1997) at Abisko, Swedish Lapland (68°N). The oxidative stress was assessed on leaves and stems by analysing ascorbate and glutathione concentrations, and activities of the closely related enzymes ascorbate peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2). The affects of autumnal leaf senescence and stem cold hardening on these variables were also considered. The results showed that the treatment caused scarcely any response in the studied variables, indicating that u.v.-B flux representing a 15% ozone depletion under clear sky conditions is not sufficient to cause oxidative stress in the bilberry. It is suggested that no strain was evoked since adaptation was possible under such u.v.-B increases. The studied variables did, however, respond significantly to leaf senescence and especially to stem cold hardening.

10.
Trends Ecol Evol ; 12(1): 22-8, 1997 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21237957

RESUMO

Recent studies indicate that increasing solar UV-B is not merely an environmental stress for plants. Solar UV-B can cause plant morphogenetic effects, which can, in turn, modify the architecture of plants and the structure of a vegetation, In addition, UV-B radiation affect the production of various secondary metabolites (such as flavonoids, tannins and lignin) with important physiological and ecological consequences.

11.
Photosynth Res ; 46(1-2): 203-6, 1995 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24301583

RESUMO

Photosynthesis in light which is so weak that excitation rates are comparable to the decay rates of S-states is modelled. It is found that oxygen evolution rate varies in a non-linear way with Photosystem II excitation rate in this region, but asymptotically approaches a linear relationship (with a slope of one oxygen molecule per four excitations) as excitation rate increases. The asymptote gives an intercept (zero oxygen evolution rate) on the excitation rate axis. The question is raised, whether this model is compatible with photoautotrophy in a red alga found at 268 m depth and able to carry out photosynthesis in extremely weak light. It is found that no unorthodox mechanisms for the S-cycle in this alga have to be assumed to explain its performance.

13.
J Biochem Biophys Methods ; 12(5-6): 355-8, 1986 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-3734327

RESUMO

A simple spectropolarimetry accessory for the Aminco DW-2a spectrophotometer is described. It is useful in the wavelength range 414-671 nm (with slight modifications 200-800 nm) and gives a resolution in optical rotation better than 0.01 degree. The principle should be applicable to many other types of spectrophotometers.


Assuntos
Espectrofotometria/instrumentação , Óptica e Fotônica
14.
J Biochem Biophys Methods ; 8(4): 271-4, 1983 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-6663001

RESUMO

The effects of scattered actinic radiation on photomultipliers (Hamamatsu R-562) were investigated. Using cotton-wool to model dense biological preparations, it was found that the scattered actinic radiation received by the photomultiplier gives rise to phytochrome-like signals. This demonstrated the necessity to shield the photomultiplier from scattered actinic light for sensitive measurements with light-scattering preparations.


Assuntos
Luz , Espalhamento de Radiação , Espectrofotometria , Fitocromo/análise , Espectrofotometria/instrumentação
17.
Physiol Plant ; 37(3): 183-184, 1976 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28869307

RESUMO

The protochlorophyll(ide) present in primary roots of dark-grown corn (Zea mays) seedlings has an in vivo absorption maximum at 634 nm. Red light converts the pigment to chlorophyll(ide) a with an absorption maximum at 675 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA